

AT&T Wireless Developer Program
© 2003 AT&T Wireless. All rights reserved.

Developing Applications for Pocket
PC and GPRS/EDGE

devCentral White Paper

Document Number 12588

Revision 2.0

Revision Date 10/15/03

devCentral White Paper i 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Legal Disclaimer

This document and the information contained herein (collectively, the "Information") is provided to you (both the individual receiving

this document and any legal entity on behalf of which such individual is acting) ("You" and "Your") by AT&T Wireless Services, Inc.

("AWS") for informational purposes only. AWS is providing the Information to You because AWS believes the Information may be

useful to You. The Information is provided to You solely on the basis that You will be responsible for making Your own assessments

of the Information and are advised to verify all representations, statements and information before using or relying upon any of the

Information. Although AWS has exercised reasonable care in providing the Information to You, AWS does not warrant the accuracy

of the Information and is not responsible for any damages arising from Your use of or reliance upon the Information. You further

understand and agree that AWS in no way represents, and You in no way rely on a belief, that AWS is providing the Information in

accordance with any standard or service (routine, customary or otherwise) related to the consulting, services, hardware or software

industries.

AWS DOES NOT WARRANT THAT THE INFORMATION IS ERROR-FREE. AWS IS PROVIDING THE INFORMATION TO YOU

"AS IS" AND "WITH ALL FAULTS." AWS DOES NOT WARRANT, BY VIRTUE OF THIS DOCUMENT, OR BY ANY COURSE OF

PERFORMANCE, COURSE OF DEALING, USAGE OF TRADE OR ANY COLLATERAL DOCUMENT HEREUNDER OR

OTHERWISE, AND HEREBY EXPRESSLY DISCLAIMS, ANY REPRESENTATION OR WARRANTY OF ANY KIND WITH

RESPECT TO THE INFORMATION, INCLUDING, WITHOUT LIMITATION, ANY REPRESENTATION OR WARRANTY OF

DESIGN, PERFORMANCE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, OR

ANY REPRESENTATION OR WARRANTY THAT THE INFORMATION IS APPLICABLE TO OR INTEROPERABLE WITH ANY

SYSTEM, DATA, HARDWARE OR SOFTWARE OF ANY KIND. AWS DISCLAIMS AND IN NO EVENT SHALL BE LIABLE FOR

ANY LOSSES OR DAMAGES OF ANY KIND, WHETHER DIRECT, INDIRECT, INCIDENTAL, CONSEQUENTIAL, PUNITIVE,

SPECIAL OR EXEMPLARY, INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS

INTERRUPTION, LOSS OF BUSINESS INFORMATION, LOSS OF GOODWILL, COVER, TORTIOUS CONDUCT OR OTHER

PECUNIARY LOSS, ARISING OUT OF OR IN ANY WAY RELATED TO THE PROVISION, NON-PROVISION, USE OR NON-USE

OF THE INFORMATION, EVEN IF AWS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH LOSSES OR DAMAGES.

devCentral White Paper ii 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Revision History

All marks, trademarks, and product names used in this document are the property of their respective owners.

Date Revision Description

03/14/03 1.1 First release of this document for Pocket PC 2002.

09/05/03 1.2 New devCentral template applied to document.

09/15/03 1.3 Links updated throughout document.

10/15/03 2.0 Document updated for Pocket PC 2003.

devCentral White Paper iii 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Table of Contents

1. Introduction ...1
1.1 Audience...2
1.2 Contact Information ..2
1.3 Resources...3

1.3.1 AWS Resources ..3
1.3.2 Microsoft Resources..3
1.3.3 3GPP Resources...4
1.3.4 Other Resources..5

1.4 Terms and Acronyms..5

2. Overview: Developing for Pocket PC ...7

3. Types of Devices ..12

4. Connection Management ...14

5. Power Management ...18

6. Security...19

7. Voice Call Control ...21

8. Short Message Service (SMS) and SIM Access ..23

9. Bluetooth Integration ..25

10. Software Development Tools ...26
10.1 eMbedded Visual C++ ..27
10.2 Windows CE Platform SDK ..28

10.2.1 SDK Emulation Environment ...28
10.2.2 SDK Tools..28
10.2.3 SDK Sample Applications for Pocket PC ..29

10.3 .NET Compact Framework ...30
10.3.1 Overview 30
10.3.2 Emulation 31
10.3.3 Sample Applications ..32

11. Programming Considerations ...33
11.1 Characteristics of Wireless Connections ..33
11.2 Memory Management...34
11.3 Object Store..36
11.4 Property Database..37
11.5 UDP/TCP/IP Sockets Programming ...39

devCentral White Paper iv 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Table of Contents

12. Sample Application...40
12.1 eMbedded Visual C++ ..40

12.1.1 Set Up the Environment...40
12.1.2 Creating the Project ...40
12.1.3 Writing the Code ..42
12.1.4 Connection Manager ...48
12.1.5 Debugging..51
12.1.6 Summary 53

12.2 Visual Studio.NET 2003..54
12.2.1 Set Up the Environment...54
12.2.2 Creating the Project ...55
12.2.3 Porting the Code..56
12.2.4 Connection Management...56
12.2.5 Summary 60

12.3 ASP.NET ..61
12.3.1 Choosing ASP.NET ...61
12.3.2 Advantages and Disadvantages..62
12.3.3 Application Porting...63

Figures

Figure 1: Stock Quote Dialog Box .. 42

Tables

Table 1: Terms and Acronyms .. 5
Table 2: Tools Versus Platforms ... 11
Table 3: Types of Windows CE Devices ... 13
Table 4: Available Tools and When to Use Them... 26
Table 5: Supported and Unsupported Browser Features.. 62

devCentral White Paper 1 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

1. Introduction

This paper explains how developers can design applications that operate
on the Microsoft Pocket PC platform and that communicate using the
AT&T Wireless General Packet Radio Service (GPRS)/Enhanced Data
Rates for GSM Evolution (EDGE) network.

The Pocket PC platform, based on the Microsoft Windows CE operating
system, is an ideal complement for wireless communications as it offers
significant computing power in a small convenient form factor, enabling a
variety of communications-oriented applications that can enhance
productivity.

Since Microsoft and other parties provide thorough documentation on
developing Pocket PC applications, this paper emphasizes those aspects
that are unique to wireless networking.

This version of the paper emphasizes development for the Pocket PC
2003 platform. The first version of this paper released in March 2003
covered the Pocket PC 2002 platform. Pocket PC 2003 introduces a
number of new features of interest to developers including:

! The use of the Windows CE 4.2 operating system

! The Inclusion of the .NET Compact Framework in ROM

! The ability with integrated devices (based on Pocket PC Phone
Edition) to maintain GPRS/EDGE connections even while
suspended

! Enhancements to Pocket Internet Explorer

! Enhanced SMS capability that simplifies application access to SMS
messages.

! Bluetooth support with a new API

! Enhanced security features, including support for L2TP and IPSec.

For a thorough discussion of the new features in Pocket PC 2003, refer to
Microsoft’s Whitepaper, What's New for Developers in Windows Mobile
2003-based Pocket PC, referenced in Section 1.3 of this document.

devCentral White Paper 2 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

Pocket PC 2003 also benefits end-users with zero-configuration Wi-Fi
support, an improved version of Outlook, a new version of Media Player,
and improved keyboard support. However, these features should not
affect wireless-application developers.

This paper begins with an overview of developing for the Pocket PC, and
then discusses types of devices, connection management, power
management, security, voice call control, and short message service and
SIM access. It then explains software development tools in detail, followed
by programming considerations. It finally presents a sample application in
detail using the two primary development environments.

1.1 Audience

This paper has been developed for independent software vendors,
corporate developers, and system integrators engaged in application
development. The paper assumes a working knowledge of GPRS and
EDGE, and reasonable knowledge of Windows programming, as well as
some knowledge of Pocket PC.

1.2 Contact Information

E-mail any comments or questions regarding this document to
developer.program@attws.com. Please reference the title of this
document in your e-mail.

Authors: Mark Hotopp, Farzeen Mohazzabfar,
support@QualityInMotion.com, and Peter Rysavy, http://www.rysavy.com.

mailto:developer.program@attws.com
mailto:support@QualityInMotion.com
http://www.rysavy.com/

devCentral White Paper 3 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

1.3 Resources

1.3.1 AWS Resources

AT&T Wireless Communication Manager Developer Reference
http://www.attwireless.com/developer/technologies/awsCommunicationMa
nager.jhtml

1.3.2 Microsoft Resources

What's New for Developers in Windows Mobile 2003-based Pocket PC,
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnppc2k3/html/winmob03.asp

eMbedded Visual C++ 4.0 and Windows CE .NET, Microsoft White Paper,
http://msdn.microsoft.com/vstudio/device/embedded/evcandcenet.asp

Windows CE 3.0: Application Programming, Nick Grattan, Marshall Brain,
October 2000, Prentice Hall, ISBN – 0130255920.

Pocket PC Network Programming, Steve Makofsky, July 2003, Addison-
Wesley, ISBN – 0-321-13352-8

Microsoft Pocket PC Technical Articles,
http://www.microsoft.com/windowsmobile/resources/technicalarticles/pock
etpc/default.mspx

Microsoft: What's New for Developers in Windows Mobile 2003-based
Pocket PC, http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnppc2k3/html/winmob03.asp

Microsoft article: Comparing Web Controls and Mobile Controls.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/mwsdk/html/mwconcomparingwebcontrolsmobilecontrols.asp

Microsoft article Build Better Applications with SQL Server CE 2.0.
http://www.microsoft.com/sql/CE/default.asp

Microsoft MSDN Library, October 2003.
http://msdn.microsoft.com/library/default.asp

http://www.attwireless.com/developer/technologies/awsCommunicationManager.jhtml
http://www.attwireless.com/developer/technologies/awsCommunicationManager.jhtml
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnppc2k3/html/winmob03.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnppc2k3/html/winmob03.asp
http://msdn.microsoft.com/vstudio/device/embedded/evcandcenet.asp
http://www.microsoft.com/windowsmobile/resources/technicalarticles/pocketpc/default.mspx
http://www.microsoft.com/windowsmobile/resources/technicalarticles/pocketpc/default.mspx
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnppc2k3/html/winmob03.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnppc2k3/html/winmob03.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/mwsdk/html/mwconcomparingwebcontrolsmobilecontrols.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/mwsdk/html/mwconcomparingwebcontrolsmobilecontrols.asp
http://www.microsoft.com/sql/CE/default.asp
http://msdn.microsoft.com/library/default.asp

devCentral White Paper 4 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

Windows Mobile Developer Portal:
http://www.microsoft.com/windowsmobile/developer

Microsoft Developer Subscriber Downloads:
http://msdn.microsoft.com/subscriptions/downloads/default.asp

Microsoft Windows Platform SDK for Pocket PC 2002, Help files, Software
Developer Kit, January 2002.

Microsoft Windows Platform SDK for Pocket PC 2003, Help files, Software
Developer Kit, April 2003.

Microsoft eMbedded Visual Tools 3.0, Help files, Software Developer Kit

Microsoft White Paper: Smart Device Programmability,
http://msdn.microsoft.com/vstudio/device/smartdev.asp.

1.3.3 3GPP Resources

3GPP TS 01.61, Technical Specification, General Packet Radio Service
(GPRS); GPRS Ciphering Algorithm Requirements,
http://www.3gpp.org/ftp/Specs/2003-06/R1999/01_series/0161-800.zip

3GPP TS 03.40, Technical Specification: Technical Realization of the
Short Message Service (SMS), http://www.3gpp.org/ftp/Specs/2003-
06/R1998/03_series/0340-750.zip

3GPP TS 03.60, Technical Specification: General Packet Radio Service
(GPRS), Service Description. http://www.3gpp.org/ftp/Specs/2003-
06/R1998/03_series/0360-790.zip

3GPP TS 07.05, Technical Specification: Use of Data Terminal
Equipment—Data Circuit Terminating Equipment (DTE–DCE) Interface for
Short Message Service (SMS) and Cell Broadcast Service (CBS),
http://www.3gpp.org/ftp/Specs/2003-06/R1998/07_series/0705-701.zip

3GPP TS 07.07: Technical Specification, Third Generation Partnership
Project: AT Command Set for GSM Mobile Equipment (ME),
http://www.3gpp.org/ftp/Specs/2003-06/R1998/07_series/0707-780.zip

3GPP TS 11.11, Technical Specification: Specification of the Subscriber
Identity Module—Mobile Equipment (SIM-ME) Interface,
http://www.3gpp.org/ftp/Specs/2003-06/R1999/11_series/1111-891.zip

http://www.microsoft.com/windowsmobile/developer
http://msdn.microsoft.com/subscriptions/downloads/default.asp
http://msdn.microsoft.com/vstudio/device/smartdev.asp
http://www.3gpp.org/ftp/Specs/2003-06/R1999/01_series/0161-800.zip
http://www.3gpp.org/ftp/Specs/2003-06/R1998/03_series/0340-750.zip
http://www.3gpp.org/ftp/Specs/2003-06/R1998/03_series/0340-750.zip
http://www.3gpp.org/ftp/Specs/2003-06/R1998/03_series/0360-790.zip
http://www.3gpp.org/ftp/Specs/2003-06/R1998/03_series/0360-790.zip
http://www.3gpp.org/ftp/Specs/2003-06/R1998/07_series/0705-701.zip
http://www.3gpp.org/ftp/Specs/2003-06/R1998/07_series/0707-780.zip
http://www.3gpp.org/ftp/Specs/2003-06/R1999/11_series/1111-891.zip

devCentral White Paper 5 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

1.3.4 Other Resources

ASP.NET Mobile Controls. http://www.asp.net/mobile/intro.aspx

MSDN Mobile and Embedded Developer Center:
http://www.msdn.com/mobility

Quality in Motion: Software research, tool analysis, and development of
the demonstration applications: e-mail: farzeen@qualityinmotion.com

1.4 Terms and Acronyms

Table 1 defines terms and acronyms used in this document.

Table 1: Terms and Acronyms

Term or Acronym Definition

API Application Program Interface

APN Access Point Name

C# (Pronounced C sharp) An object-oriented computer
programming language from Microsoft that enables
programmers to quickly build a wide range of applications for the
Microsoft .NET platform.

CE Compact Edition

cHTML Compact HTML

CSV Comma Separated Value

DNS Domain Name System

EDGE Enhanced Data Rates for GSM Evolution

FTP File Transfer Protocol

GEA GPRS Encryption Algorithm

GGSN GPRS Gateway Support Node

GPRS General Packet Radio Service

GSM Global System for Mobile Communications

GUID Global Unique Identifier

HLR Home Location Register

HTML Hypertext Markup Language

IDE Integrated Design Environment

IL Intermediate Language

IP Internet Protocol

http://www.asp.net/mobile/intro.aspx
http://www.msdn.com/mobility
mailto:farzeen@qualityinmotion.com

devCentral White Paper 6 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

Term or Acronym Definition

IPSec Secure IP

IR Infrared

L2TP Layer 2 Tunneling Protocol

MFC Microsoft Foundation Class

MS Mobile Station (mobile computer plus communications device)

MSIL Microsoft Intermediate Language

MSISDN Mobile Subscriber Integrated Services Digital Network

NAT Network Address Translation

NDIS Network Driver Interface Specification

OID Object Identifier

PCMCIA Personal Computer Memory Card International Organization

PDA Personal Digital Assistant

PDP Packet Data Protocol

PPTP Point to Point Tunneling Protocol

SD Secure Digital

SDK Software Developer Kit

SGSN Serving General Packet Radio Service (GPRS) Support Node

SIM Subscriber Identity Module

SMS Short Message Service

SQL Structured Query Language

SSL Secure Sockets Layer

TAPI Telephony API

TCP Transmission Control Protocol

UDP User Datagram Protocol

USSD Unstructured Supplementary Service Data

VPN Virtual Private Network

WAP Wireless Application Protocol

WML Wireless Markup Language

XML Extensible Markup Language

devCentral White Paper 7 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

2. Overview: Developing for Pocket PC

Developing applications for the Pocket PC is similar in many respects to
developing applications for Microsoft Windows for desktop and notebook
platforms. Development tools are similar, as are most of the APIs, and the
platform itself provides numerous capabilities and comes standard with a
variety of applications, including:

! Outlook for contacts, e-mail, notes, and calendar

! Synchronization with host (e.g., desktop) computers via Microsoft
ActiveSync

! Pocket Word, Pocket Excel, and Windows Media Player

! Other capabilities, including:

— A multi-threaded and multi-tasking application environment

— A browser that supports HTML, XML/XSL, WML, cHTML,
Jscript, and SSL

— Graphics support with up to 65,536 colors

— Interfaces for Short Message Service (SMS), Subscriber
Information Module (SIM) information, and telephony control via
the Telephony API (TAPI)

— Expansion capabilities with options for Compact Flash, Secure
Digital (SD), PCMCIA, and multimedia card

There are some significant differences in working with the Pocket PC.
Specifically, applications must take into account memory constraints, as
well as user interface constraints. Today’s Pocket PC comes standard
with 32 MB or 64 MB of storage for programs and data, though memory
can be added easily using the SD or Compact Flash slots.

Developers must consider the user interface carefully. Current Pocket PC
devices typically have a resolution of 240 X 320 pixels (76,800 total),
compared to a typical resolution of 1024 X 768 pixels (786,432 total) for
notebook platforms. This is only about ten percent of the viewing area of
larger platforms. Fortunately, the Pocket PC display, combined with good
graphical capabilities, is sufficient for a wide range of applications. The
screen can comfortably display sixteen lines of text with six or seven
words per line.

devCentral White Paper 8 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

Another consideration is the ability to enter information. Without a
keyboard, the amount of data a user can enter (and the speed at which it
can be entered) is limited, and must be accounted for by the developer to
avoid a frustrating user experience. For example, the stylus-based user
interface is not well suited for typing in long messages. However, it works
very well for making selections from predefined lists or entering small
amounts of data, perhaps two to ten words. Keyboard options are
available for most Pocket PCs, but diminish its portability.

The smaller display of the Pocket PC actually makes the platform well
suited for GPRS/EDGE communications, as it only takes a small amount
of data to populate the screen, which can happen quickly over a GPRS
connection. Furthermore, the ability of GPRS/EDGE to deliver IP-based
networking over extended geographic areas is highly complementary with
the portable nature of the device.

There are three fundamental approaches for developing applications for
Pocket PC 2003:

1. Using Microsoft eMbedded Visual C++ 4.0 (Service Pack 2).

Note: eMbedded Visual Basic is no longer supported in Pocket PC
2003. It has been superseded by Visual Basic .NET. However, existing
eMbedded Visual Basic applications continue to run for backward
compatibility as long as the Pocket PC 2003 device contains the Visual
Basic runtime DLLs. For more information on how to move eMbedded
Visual Basic applications to Visual Basic .NET visit:
http://msdn.microsoft.com/library/en-us/dnppc2k3/html/fromemb.asp

2. Using Visual Studio .NET 2003 and The Microsoft .NET Compact
Framework.

3. Using ASP.NET Mobile Controls (formerly the Microsoft Mobile
Internet Toolkit)

To illustrate the steps involved in developing wireless applications for
Pocket PC, this paper describes a simple application that targets the
Pocket PC platform and uses GPRS/EDGE. This is done for both
eMbedded Visual C++ 4.0 and .NET Compact Framework environments.
This paper also discusses the pros and cons of each development
environment.

http://msdn.microsoft.com/library/en-us/dnppc2k3/html/fromemb.asp

devCentral White Paper 9 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

The sample application is a stock-quote application that allows users to
enter a stock ticker symbol. Using a GPRS/EDGE connection, the
application makes a request to a stock quote service to retrieve the
current price. The application uses the Yahoo Comma-Separated Value
(CSV) quote service, but other quote providers could easily be substituted.

The first approach, eMbedded Visual C++ 4.0, is very similar to building a
desktop application using Visual C++. The sample application is a
Microsoft Foundation Class (MFC) dialog based application. This paper
discusses how to create the project, add code to perform user interface
and networking operations, how to build the application for various targets,
and how to debug the application. If you have developed applications
using Visual C++ already, you will notice how similar building this
application is. For size and speed considerations, the sample application
could also be written using the Windows CE API (which is similar to Win32
programming).

The second approach uses Visual Studio .NET 2003 to illustrate how an
application can be created for the .NET Compact Framework. The .NET
Compact Framework application differs significantly in several respects.
First, it is compiled to Microsoft Intermediate Language (MSIL), the
intermediate language created in the .NET platform, which is a high level
machine code that is device independent. The MSIL code is translated at
runtime to the target device machine code. There are some benefits and
drawbacks to this method, which are discussed later.

The third approach, ASP.NET Mobile Controls, is based on a browser
approach. ASP.NET allows you to create content that can be rendered on
a variety of devices, including the Pocket PC and phones with micro
browsers (e.g., WAP). This paper does not show a sample application for
this third approach but does discuss the approach and the pros and cons
of this approach in the section, ASP.NET. To find out more about
ASP.NET Mobile Controls, you can also visit:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/mwsdk/html/mwconcomparingwebcontrolsmobilecontrols.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/mwsdk/html/mwconcomparingwebcontrolsmobilecontrols.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/mwsdk/html/mwconcomparingwebcontrolsmobilecontrols.asp

devCentral White Paper 10 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

A final approach, and one not covered in this paper, is Microsoft SQL
Server 2000 Windows CE Edition (SQL Server CE) version 2.0. This
approach allows applications that extend enterprise data management
capabilities to Pocket PC devices and store and manipulate large amounts
of data. Essentially, the Pocket PC operates as an extension of an
enterprise database. This approach is well suited for scenarios where the
device does not enjoy constant connectivity (as provided by GPRS/EDGE)
and is only periodically synchronized.

To find out more about SQL Server CE, please visit:
http://www.microsoft.com/sql/CE/default.asp .

An alternative to developing an application for the Pocket PC environment
is to make it available via Microsoft Windows Terminal Services. In this
approach, the application operates on a Windows Server at a central
location. The Pocket PC uses the Terminal Services Client, which comes
with the Pocket PC platform. With Terminal Services, the Terminal Server
sends screen updates to the Terminal Services Client, and the client
sends user input to the server. This approach is feasible using
GPRS/EDGE connections.

The advantage of this approach is that applications can be maintained in a
central location, and no software needs to be distributed for the mobile
devices. One item to consider is that many existing applications assume a
screen size larger than offered by the Pocket PC. To avoid inconvenient
screen scrolling by the user, it may be best to reformat the display output
to the parameters of the Pocket PC screen. To mitigate this need, the
Pocket PC client offers an option to limit the size of the server desktop to
fit on the screen.

Table 2 summarizes the tools that are available for the different platforms.

http://www.microsoft.com/sql/CE/default.asp

devCentral White Paper 11 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

General Notes Applicable to Table 2:

Pocket PC = Operating System + Form Factor

Windows CE is the Operating System.

If you are going to build a .NET CF (Compact Framework)
application, you should distribute the CF if you are targeting for
Pocket PC 2000/2002

Table 2: Tools Versus Platforms

 Platforms

Tools
Pocket PC 2000

(CE Version

Pocket PC 2002/
Phone Edition

(CE Version 3.1)

Pocket PC 2003/Phone
Edition

(CE.NET Version.4 2)

Embedded Visual Tools 3.0
(See Note 1) Yes Yes

Yes (but you cannot deploy
or debug)

Embedded Visual C++ 4.0 SP 2
(See Note 2) No No Yes

Visual Studio .NET 2003 Yes (See Notes 3 and 4) Yes (See Note 4) Yes (See Note 4)

Includes Microsoft Connection
Manager No Yes Yes

Table Notes:

1. Includes Embedded Visual Basic and Embedded Visual C++ 3.0

2. Can only create native executables (Cannot create .NET applications)

3. According to:
http://msdn.microsoft.com/chats/embedded/embedded_103101.asp

4. Can only create .NET CF (Compact Framework) applications (Native
applications can be created via Embedded Visual C++ 4.0 SP2)

http://msdn.microsoft.com/chats/embedded/embedded_103101.asp

devCentral White Paper 12 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

3. Types of Devices

This section briefly discusses the various device types, configurations, and
their characteristics. The Windows Mobile platform currently offers PDAs,
PDAs with phone capability, and Smartphones. Smartphones differ from
PDAs in that they have a traditional mobile telephone keypad, do not rely
on a stylus, and have a smaller display. This paper does not discuss
Windows Mobile-based Smartphones and concentrates on the Pocket PC
platform.

Note: Microsoft provides a separate SDK for the Smartphone.

PDAs that have an integrated phone capability are based on a version of
Pocket PC called Pocket PC Phone Edition. Development tools are the
same for both Pocket PC and Pocket PC Phone Edition. The difference is
that the telephony and GPRS/EDGE features in Pocket PC Phone Edition
are more tightly integrated. For example, users can tap on contacts in
Outlook to initiate a phone call.

PDAs without phone capability can communicate over GPRS/EDGE using
either a sleeve that accepts PC Card modems (with Compact Flash
devices a future option), or via a tethered connection to a GPRS/EDGE
capable mobile telephone. Tethering options include cables, Infrared (IR)
or Bluetooth.

Note: Specific connectivity options (e.g. sleeves, Bluetooth, cables) will
vary depending on the vendors of the PDA, modem, or mobile telephone.

devCentral White Paper 13 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

Table 3 summarizes the available devices and their characteristics.

Table 3: Types of Windows CE Devices

Device Connectivity Comments

Pocket PC Sleeve for PC
Card, Compact
Flash, tethered
using cable, IR or
Bluetooth

Any Pocket PC PDA (version 2002 or later) can be
used with GPRS, though specific connectivity options
may vary.

Two-handed operation using a stylus.

Pocket PC
2002/2003
Phone Edition

Integrated
GSM/GPRS/EDG
E

AT&T Wireless offers the Siemens SX-56, which
currently supports GSM/GPRS (not EDGE).

Tight integration between platform and
communications functions.

Smartphone Integrated
GSM/GPRS/EDG
E

AT&T Wireless offers the Motorola MPx200, which is
a GPRS device.

Single-hand operation using phone keypad. No
stylus.

Details on developing for this platform can be found
at the AT&T Wireless devCentral Web site at
http://www.attwireless.com/developer/technologies/s
martphone/.

Note: Companies such as Symbol Technologies have also developed
integrated devices that combine a Pocket PC and GSM/GPRS/EDGE
communications modules. While highly integrated, these devices are not
necessarily based on Pocket PC 2003 Phone Edition.

Please refer to the following link on the AT&T Wireless Developer Web
site for further information regarding specific Pocket PC devices that AT&T
Wireless supports:
http://www.attwireless.com/developer/devices/PDAs/

http://www.attwireless.com/developer/technologies/smartphone/
http://www.attwireless.com/developer/technologies/smartphone/
http://www.attwireless.com/developer/devices/PDAs/

devCentral White Paper 14 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

4. Connection Management

A crucial aspect of GPRS/EDGE application development for the Pocket
PC is managing the GPRS/EDGE connection. Section 3 discussed the
different types of GPRS/EDGE devices. To the Pocket PC, the
GPRS/EDGE device appears as either a modem or network device,
depending on how the GPRS/EDGE device vendor has implemented their
device. The Pocket PC provides networking (e.g., Network Driver Interface
Specification—NDIS) and modem interfaces that allow the TCP/IP
protocol stack to communicate with the GPRS/EDGE device.

For a GPRS/EDGE device to be able to communicate with the network, it
must initiate what is called a Packet Data Protocol (PDP) Context. This
results in the network assigning it an IP address and knowing the location
of the device. Users can manually invoke a GPRS/EDGE connection, but
in many instances, this will involve an extra step for the user. It is best if
the application initiates a connection if a connection is not already
established.

New to Pocket PC 2003 is the ability to maintain a GPRS/EDGE
connection when the device is in standby mode. GPRS/EDGE data
connections are instantly resumed after a completed voice call or once the
device is turned back on. This greatly enhances the user experience with
no additional development burden for the developer.

For devices with modem-based interfaces, an application can initiate a
PDP context by issuing a modem AT command to the device as per the
3GPP Specification 07.07. However, it is programmatically simpler to work
with higher level APIs that manage the connection.

Pocket PC 2003 provides a Connection Manager API that handles this
function. This API is discussed in detail in the Section 12.1.4, Connection
Manager. This API is available for integrated devices and system
configurations where the GPRS/EDGE device can be controlled through
the Pocket PC Settings/Connections/Connections mechanism.

devCentral White Paper 15 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

With devices like the HP iPaq, that requires an add-on card in order to
create a GPRS/EDGE connection, AT&T Wireless provides its own
connection management utility called Communication Manager. The AT&T
Wireless utility is a standalone application that provides system
configuration, diagnostic information, troubleshooting support, connection
management, and Web-traffic optimization. It also provides an API that
can be used by other applications to create or test for a GPRS/EDGE
connection.

Communication Manager is very similar to the Connection Manager built
into Pocket PC 2002 and Pocket PC 2003. However, unlike the
connection manager provided by Pocket PC, which has a C-call level API,
the AT&T Wireless utility exposes a Windows messaging API. This means
that an application must send Windows messages to the main window of
the connection manager. The following is a list of all the functions that are
available:

! Connect: Send this message in order to tell the connection
manager to connect for you.

! Disconnect: Send this message to tell the connection manager to
disconnect for you.

! Get status: Send this message in order to determine the current
status of the connection.

! Display: Send this message to tell the connection manager to
display itself.

! Shutdown: Send this message to tell the connection manager
application to shut itself down.

Note: Currently, Communication Manager only supports Pocket PC
2002. It does not support Pocket PC 2002 Phone Edition, Pocket PC
2003, nor Pocket PC 2003 Phone Edition.

The principal advantage of using the AT&T Wireless API is that it supports
some system configurations not supported by the Microsoft API. It also
provides cross-platform support including non-Pocket PC devices. For
more detailed information on how to program with the AT&T Wireless
Communication Manager, refer to AT&T Wireless Communication
Manager Developer Reference at the following link:

http://www.attwireless.com/developer/technologies/awsCommunicationMa
nager.jhtml

http://www.attwireless.com/developer/technologies/awsCommunicationManager.jhtml
http://www.attwireless.com/developer/technologies/awsCommunicationManager.jhtml

devCentral White Paper 16 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

Developers should be careful that their application does not make any
assumptions about connection status, as a number of factors can control
the connection. These include:

! Network Factors: The GPRS/EDGE network will terminate a PDP
Context after four hours of inactivity or one hour out of coverage.

! Signal Quality: If the signal is very weak or absent, the modem
itself may terminate the connection.

! Power Management Settings: The device will terminate the
connection after the number of minutes specified in
Settings/System/Power. Note for Pocket PC 2003 Phone Edition,
the GPRS connection is maintained even in standby.

! User Actions: A user manually turning off the device will cause the
connection to drop.

! Other Applications: Other applications may also be managing the
connection. For example, Pocket IE will terminate the GPRS/EDGE
connection after ten minutes of inactivity.

Since the application is not necessarily aware of the events listed above, it
should always check the connection status before initiating
communications. The application itself may also terminate a connection.
An application can accomplish this by using the Connection Manager API.

Typically, this would only occur when the application is closed. However,
since it is up to the application developer, any algorithm could be used.
For example, the application can employ an inactivity timer. Given that
billing is generally based on the volume of data communicated, and given
that establishing the GPRS/EDGE connection (PDP context activation)
takes five to ten seconds, the user will generally have the best experience
when the connection is maintained.

devCentral White Paper 17 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

As mentioned in the bulleted list above, power management settings on
the device can cause connections to terminate. If the device is set to shut
off after a specified period of inactivity, the connection will terminate.
Unfortunately, Pocket PC does not consider an open socket the same as
network activity. If your application requires a connection for long periods
of time, regardless of user activity, you must address this issue. One
simple option is for your documentation, or application, to prompt the user
to change their power management settings. Another option is to change
the settings when your application opens, and then revert to their original
settings when your application closes. Alternatively, you could create a
thread that performs some arbitrary background processing at preset
intervals in order to keep the power management routines from activating.
Doing so will obviously have power implications.

devCentral White Paper 18 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

5. Power Management

Power management is a much more sensitive issue for Pocket PC
development than for desktop development. Since the Pocket PC platform
can shut off at any time for many reasons, a developer must consider this
when designing an application.

Power being switched off has a much more profound effect on network-
centric applications, because at one moment your code logic may assume
a good connection is available, but the next moment the device is turned
off. When the device is resumed, you may attempt to use that connection,
which in most cases is now broken. This means your application must be
written in a manner that allows it to robustly reestablish a connection or
regain a resource at any point in time. If not, the user will be forced to
terminate your application and then restart it in order for it to work properly
again.

Note: Pocket PC 2003 Phone Edition can maintain GPRS/EDGE
connections even when the unit is powered off. This can simplify network
application development considerably.

Another consideration for applications that may be particularly power
hungry, is the current power level of the device. If your application relies
on high wattage peripherals or requires a lot of CPU and memory use, you
may consider monitoring the device power. This can be done using the
CeGetSystemPowerStatusEx function. When you determine that the
power status is getting dangerously low, you can take appropriate action.

devCentral White Paper 19 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

6. Security

When considering security, developers should take into account the
security features provided by GPRS/EDGE technology, connectivity
between the AT&T Wireless GPRS/EDGE network and the customer
network, and the security features and mechanisms available within
Pocket PC.

Air-interface ciphering (encryption) in GPRS/EDGE is similar to that of the
GSM voice network. The encryption algorithm is called the GPRS
Encryption Algorithm (GEA.) The strength of GEA is roughly equivalent to
that of A5 used in GSM. The GPRS/EDGE network encrypts data
communication between the modem and the portion of the network
infrastructure called the Serving GPRS Support Node (SGSN). Beyond
the SGSN, the data is not encrypted—however it does travel across a
private network until it reaches the Gateway GPRS Support Node
(GGSN), which is the gateway to external networks.

Beyond the GGSN, AT&T Wireless offers a number of options to secure
the connection to customer networks. These options include the use of
frame relay permanent virtual circuits and VPN connections for Internet-
based connections. Refer to the AT&T Wireless devCentral Web site:
http://www.attwireless.com/developer/ for more information.

The security model of the Pocket PC itself is very similar to that of the
desktop versions. Microsoft makes many APIs available to aid the
developer in creating secure applications. These are the same APIs
available to the desktop developer, but with reduced functionality. All the
major cryptographic functions are part of the Windows CE.NET 4.2
operating system.

The cryptographic API is the lowest-level API available for performing
secure communications. It contains functions to perform the following
operations:

! Hash data using standard algorithms such as SHA, MD5, and many
others

! Get random data used for seeding or public key infrastructure

! Import and export keys of various types

! Encrypt and decrypt data using standard protocols such as DES3,
RC2, RC4, and many others

http://www.attwireless.com/developer/

devCentral White Paper 20 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

! Perform standard authentication operations using protocols such as
Kerberos, NTLM, and many others

! Extend hashing, encrypting, and authenticating protocols with
custom providers that you may require

The HTTP Control API is a higher-level API available for use, but it is not
specifically security related. This API will allow you to connect to HTTPS
sites and securely transfer data to and from those sites. If the
communications you are performing can be done with a Web server via
SSL, then this is the simplest and fastest way to go.

There is also VPN support provided by the Pocket PC for the Point-to-
Point Tunneling Protocol (PPTP) and the Layer 2 Tunneling Protocol
(L2TP) in conjunction with IPSec. Previously on Pocket PC devices, only
PPTP was available as part of the operating system. This can secure
application communications without requiring any support from the
application itself. In addition, many of today’s VPN hardware and software
vendors have Pocket PC-compatible clients available.

For more information on how to access VPN connectivity on the Pocket
PC, see CM_VPN_Entries in the Pocket PC 2003 SDK.

devCentral White Paper 21 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

7. Voice Call Control

Several telephony APIs are available on the Pocket PC 2002/2003 for
both the Pocket PC and Pocket PC Phone Edition:

! Phone API: A high level API used for placing voice calls.

! Telephony API (TAPI): A low level API that allows complete
control over any available line device.

! Assisted TAPI: A single function API used for making a voice call.

The highest-level API, called the Phone API, is the easiest and quickest
way to add full-featured voice phone capabilities to your application. This
API will allow phone calls to be placed and the system call log to be read.
The Phone API consists of the following five functions:

! PhoneOpenCallLog: This function opens the call log and sets the
seek pointer to start searching from the beginning of the log.

! PhoneSeekCallLog: This function initiates a search that ends at a
given entry in a call log.

! PhoneGetCallLogEntry: This function returns the information for
the specified call log entry and then advances the seek pointer to
the next entry in the call log.

! PhoneCloseCallLog: This function closes the call log.

! PhoneMakeCall: This function dials the specified phone number.

The Telephony API, or TAPI, is by far the most powerful, however is also
the most complex, API available for working with telephony devices. The
functions are too numerous to list in this document, but a brief overview
follows. TAPI provides functions for the following capabilities:

! Retrieve general phone and radio information (serial number,
subscriber identity, etc.).

! Retrieve current state of the phone.

! Send and retrieve Unstructured Supplementary Service Data
(USSD) messages.

! Deal with caller ID features of the phone.

! Deal with call waiting features of the phone.

! Determine GPRS class of the network.

devCentral White Paper 22 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

! Determine the High Speed Circuit Switched Data (HSCSD)
configuration.

! Retrieve and manipulate the radio state.

! Establish any supported telephony or radio connection.

A simple but not very functional API is Assisted TAPI. Assisted TAPI will
only allow a call to be placed. It actually passes on your request to a
separate call-management application. This application is then
responsible for placing and controlling the call. On the Siemens SX56, this
is the built-in phone application. Assisted TAPI consists of the following
function:

tapiRequestMakeCall: Use this function to request the
establishment of a voice call. A separate call-management
application is responsible for establishing the voice call on behalf of
the requesting application. This voice call is subsequently
controlled by the user's call-manager application.

For more detailed information on the APIs discussed above, see
Microsoft’s developer Web site, http://msdn.microsoft.com/.

http://msdn.microsoft.com/

devCentral White Paper 23 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

8. Short Message Service (SMS) and SIM Access

Some applications may want to send or receive messages using the Short
Message Service (SMS) or to access the information in the Subscriber
Information Module (SIM).

SMS enables wireless devices to send and receive short messages
through an SMS center operated by the cellular operator. A single short
message can contain up to 160 alphanumeric characters (or 224
characters if using 5-bit mode). Messages can contain any combination of
alphanumeric characters. Non-text (binary) messages are also supported.
Some devices store SMS messages on the SIM, whereas others do not.
For example, on the SX56, SMS messages are not stored on the SIM
card. For more information about SMS, refer to 3GPP Technical
Specification 03.40 referenced in Section 1.3.3.

With the Pocket PC Phone Edition, users can send and receive SMS
messages using Microsoft Outlook Inbox.

There are several ways you can have your application manage SMS
messaging in Pocket PC Phone Edition. The simplest way is to use the
Short Message Service (SMS) API. Using this API, you can write
applications that send and retrieve SMS messages in relatively few lines
of code. The SMS API allows developers to do things like send and
receive messages, get the phone number of the sending device and
receive SMS notifications. For more information on the SMS API see
Microsoft’s developer Web site, http://msdn.microsoft.com/.

Note: This API refers to how applications access messages within the
local Pocket PC Phone Edition environment.

One important change to the SMS API in Pocket PC 2003 is the
deprecation of the SMSReadMessage function. This has been replaced by
a new CEMAPI interface: IMailRuleClient. The interface, which must be
implemented by the application, allows direct notification of new messages
as the device receives them. For information on how SMS messages are
delivered to devices from external networks, refer to AT&T Wireless
devCentral at http://www.attwireless.com/developer/.

Another closely related API is the Subscriber Identity Module (SIM)
Manager API. The SIM Manager API exposes a high level set of functions
that allow a developer to interface with the SIM card attached to a device.

http://msdn.microsoft.com/
http://www.attwireless.com/developer/

devCentral White Paper 24 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

There are functions within the API that allow the developer to perform the
following operations:

! Determine the SIM card capabilities

! Read SMS messages from a particular storage location.

! Lock and unlock the phone

! Read and write phone book entries on the SIM card

! Get the status of the SIM card storage

! Change the SIM card locking password

SMS messaging and SIM manipulation can also be performed directly
using serial communications and the AT command set. This is the most
complex way to perform SMS messaging and SIM card interaction. But it
does allow the developer to access all of the capabilities of the SIM card.
Most of the commands that are available with the various SIM cards are
the same, but most phone manufacturers have unique and extended
commands. For this reason, you will have to consult the developer
documentation for each phone you want to support.

The main reason for performing raw programming to the SIM card would
be if you needed to access custom functionality within the card. However,
the basic process for accessing the SIM card is fairly straightforward. You
first open the serial port using the CreateFile function. You could then use
the serial communications API to send commands and get the status of
the port. When dealing with ports, all the standard file programming APIs
are available on the Pocket PC device. These include items such as
asynchronous I/O and low-level file I/O like WriteFile.

It is also important to keep in mind that other applications, such as Pocket
Outlook, have the ability to perform SMS messaging. Applications you
write must be sensitive to locking issues related to the SIM card. For
instance, if Pocket Outlook is attempting to retrieve SMS messages, your
application will be unable to gain a lock on the SIM card. This means you
must insert retry and fail logic as appropriate. Since this is also a shared
resource, your application should obtain a lock only as long as it is actually
required. Specifically, you should not obtain a lock when the application
starts and then release it when the application terminates, as this will
prevent any other applications from obtaining a lock.

devCentral White Paper 25 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

9. Bluetooth Integration

New to Pocket PC 2003 is native Bluetooth integration. This API gives the
developer the capability to utilize the Bluetooth radio on Bluetooth
equipped devices. The API includes the following functions:

! BthGetMode: This function allows the application to determine the
current mode of the Bluetooth radio. These modes are connectable,
discoverable, and off.

! BthSetMode: This function allows the application to set the mode
of the Bluetooth radio.

Although not directly related to GPRS/EDGE, an application writer could
utilize the Bluetooth connection between a PC (or notebook computer)
and a Pocket PC 2003 device to create an Internet connection through the
mobile device using GPRS/EDGE.

devCentral White Paper 26 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

10. Software Development Tools

Microsoft provides a variety of development tools for Windows CE.
Different tools are better suited for different scenarios. Microsoft
recommends that you use the tools as shown in Table 4.

Table 4: Available Tools and When to Use Them

Tools When to Use

eMbedded Visual C++
(using eMbedded Visual Tools 3.0 and
Pocket PC 2002 SDK)

Native code applications for Pocket
PC 2000 or Pocket PC 2002.
Drivers for the Pocket PC.
Applications with real-time
performance requirements.
COM servers or Microsoft ActiveX®
controls.

eMbedded Visual C++
(using eMbedded Visual C++ 4.0 SP2 and
Pocket PC 2003 SDK)

Native code applications for Pocket
PC 2003
Drivers for the Pocket PC
Applications with real-time
performance requirements.
COM servers or Microsoft ActiveX®
controls.

.NET Compact Framework
(using Visual Studio .NET 2003)

Managed code applications for
Pocket PC 2000, 2002 and 2003.
Pocket PC Applications that use
rapid development methodologies or
call XML Web services.
Applications that must work well in
either a connected or disconnected
environment.
Applications that use either Visual
Basic .NET or C#.
Using the same tools for desktop,
server, and device development.
Software that provides a reliable and
secure environment.

Note: There is a separate SDK for Windows Mobile-based
Smartphone.

For information regarding Visual Studio .NET 2003 and the .NET Compact
Framework please visit
http://msdn.microsoft.com/vstudio/device/overview.asp

http://msdn.microsoft.com/vstudio/device/overview.asp

devCentral White Paper 27 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

For an introduction to developing applications for the Pocket PC, and for
the latest tools, technical articles and resources, visit:
http://www.microsoft.com/windowsmobile/developer. You may also want
to consider joining the Microsoft Mobile Solutions Partner Program that
provides assistance in this area.

The following sections examine the principal development tools in greater
detail.

10.1 eMbedded Visual C++

eMbedded Visual C++ is a standalone application for developing
PocketPC software using C++. It has the same look and feel as Visual
Studio 6.0, and if you are currently a Visual C++ developer, you will be
very familiar with the user interface. The initial version of the C++ sample
application was written using eMbedded Visual C++ 3.0. For Pocket PC
2003 development, eMbedded Visual C++ 4.0 must be used. It contains
many new features such as an Active Template Library (ATL) out-of-
process wizard, a subset of the Standard Template Library (STL), and
Run-Time Type Identification (RTTI) just to name a few.

Using eMbedded Visual C++ 3.0 you will be able to target the following
platforms:

! Pocket PC and Pocket PC 2002

! Smartphone 2002

! H/PC Pro

! Palm-size PC 1.2

Using eMbedded Visual C++ 4.0 you will be able to target the following
platforms:

! Pocket PC 2003 (all editions)

! Smartphone 2003

Both products are available as free downloads from Microsoft’s developer
Web site (http://www.microsoft.com/windowsmobile/developer). Visit the
developer downloads section.

EMbedded Visual C++ is the recommended Microsoft tool for
development of native (non-.NET Compact Framework) applications. You
also have the ability to run both eMbedded Visual Tools 3.0 and

http://www.microsoft.com/windowsmobile/developer
http://www.microsoft.com/windowsmobile/developer

devCentral White Paper 28 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

eMbedded Visual C++ 4.0 SP2 side-by-side if doing development for
several Pocket PC versions simultaneously although there are some
limitations, for example having two emulators open.

10.2 Windows CE Platform SDK

The Windows CE Platform SDK is designed to provide tools for building
generic applications for Windows CE .NET version 4.2. It contains header
files, libraries, documentation, samples, and various tools to aid in the
development of those applications. However, it does not include the cross-
compilers needed for developing binaries that run on Windows Mobile-
based Pocket PCs.

The following are some basic requirements for development using the
SDK:

! To ensure proper functionality of emulation, you need to run
Windows NT 4.0 or greater.

! Microsoft Visual C/C++ or another C/C++ compiler must be
installed.

! Windows CE Platform SDK must be installed.

10.2.1 SDK Emulation Environment

There is a new emulator that ships with the Pocket PC 2003 SDK. This
emulator now runs as a true hardware virtual machine. This means that
the emulator more accurately imitates an actual Pocket PC 2003 device. It
also supports networking, which means that debugging applications that
use networking functionality is much easier. Fortunately, running and
debugging with the emulator is the same as with emulator that shipped
with Pocket PC 2002 SDK. However, the new emulator cannot run side-
by-side with previous versions of the emulator. For more information on
this emulator see http://msdn.microsoft.com/library/en-
us/guide_ppc/htm/intro_to_the_ce_emulator_nafc.asp.

10.2.2 SDK Tools

WM_HIBER.EXE is a tool included in the emulation object store for each
platform. The WM_HIBER application allows the user to send
WM_HIBERNATE messages to either all applications or the application of
their choice. The user can launch it by double-clicking its icon in Explorer,
or by calling CreateProcess(). This is important for Windows CE devices,

http://msdn.microsoft.com/library/en-us/guide_ppc/htm/intro_to_the_ce_emulator_nafc.asp
http://msdn.microsoft.com/library/en-us/guide_ppc/htm/intro_to_the_ce_emulator_nafc.asp

devCentral White Paper 29 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

because hibernation is used when the device is in a low memory situation,
and therefore must be supported by your application.

REGSVRCE.EXE allows COM server DLLs to be registered. Therefore, if
you are developing a COM DLL, this will allow you to register your module
and enable you to debug it.

CEREGEDIT from the menu, or PREGEDIT.EXE from the command line,
allows you to alter your device registry under emulation. This will greatly
ease debugging when your application uses the registry for storage of
various settings.

WINDBG (invoked from the start menu as Window Debugger) is a device-
independent application for debugging your Windows CE applications.
Due to the extreme flexibility that it provides with respect to COM ports,
baud rates, device types, etc., it is not possible to ship it preconfigured for
your application. Please consult the Help menu in windbg for information
on how to configure windbg for use in your specific circumstances.

A control panel applet is provided that supplies a way for you to select
which object store to use. In selecting an object store, you are limited to
selecting object stores residing in the wce\emul\<platform> directory. If
you are not familiar with object stores, they will be covered later in this
document, (Section 11.3).

10.2.3 SDK Sample Applications for Pocket PC

The SDK also provides a variety of sample applications to get you started
with programming for the CE. These applications can be divided into the
following categories:

! User-interface applications: The user interface samples illustrate
ways to use the command bar in commctrl, create a control panel
applet, illustrate the handwriting recognition APIs, and many others.

! ActiveSync modules: ActiveSync is an API that allows
applications to synchronize data between a desktop computer and
a companion application running on a Pocket PC device. This is
perhaps one of the more difficult aspects of development on the
Pocket PC. The samples illustrate how to create a generic desktop
ActiveSync module. They also contain a skeleton project that will
allow you to quickly create your own ActiveSync module and a
sample Stock application that illustrates the use of ActiveSync.

devCentral White Paper 30 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

! Serial driver samples

! PCMCIA driver samples

! Various device driver samples

10.3 .NET Compact Framework

This section discusses the new .NET Compact Framework and how this
affects mobile application development.

10.3.1 Overview

As part of Microsoft’s ongoing .NET strategy, Microsoft has introduced a
version of .NET that targets the embedded world. This version is called
the .NET Compact Framework. It is essentially identical to the .NET
framework except that it has been scaled back to fit on Pocket PC
devices. The .NET Compact Framework 1.0 is now included in Pocket PC
2003 ROM. This simplifies distribution of applications that are targeting
Pocket PC 2003. The following list details the main characteristics of
.NET:

! Interpreted Code: Code that is compiled to target .NET; it is not
machine code, but is interpreted like Java byte code. Microsoft
refers to this as an Intermediate Language (IL).

! New Language: C# has been introduced as a language to take full
advantage of the .NET framework and make it easier to program
with .NET.

! Logical Class Hierarchy: Instead of a flat, often ambiguous API
like Win32, the .NET framework consists of many logically designed
and arranged classes. Many of these classes are simply wrappers
that use the Win32 API, but make it easier and more efficient.

One of the main advantages of .NET applications is that they are not
compiled to native code. This means that the code that has to be deployed
is the same, regardless of the processor of the device. Since the IL is
identical regardless of the platform, the same binaries can be distributed.
However, this same benefit could be an issue if there is not a .NET
Compact Framework class available for the function you want to perform.
Such is the case with the .NET sample application later in this document.
For example, the .NET Compact Framework does not have any classes
available that expose the connection manager API, therefore these must
be accessed using the .NET interop services.

devCentral White Paper 31 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

Also new to .NET is a new language called C# (pronounced see-sharp).
This language is a freeform C-style language. In fact, C++ programmers
will have little trouble becoming effective C# programmers, due to the
similarities between the two languages. However, when developing .NET
applications, you will find using C# to be much easier and more efficient
than C++, since C# was designed with .NET in mind.

The new class hierarchy exposed via .NET also simplifies development.
Unlike the Win32 API, which is flat and non-object oriented, the .NET
classes are ordered into specific hierarchical namespaces. This allows
you to easily find and understand the classes that your application might
require. And since all the .NET functionality is grouped into classes, it
greatly simplifies the programming model as well.

Microsoft has recently released the .NET Compact Framework
technology, a platform and runtime that enable enterprise developers to
take advantage of a single Visual Studio .NET integrated development
experience for managed code and XML Web services on mobile devices.

The Visual Studio.NET 2003 is currently available to MSDN Universal
subscribers from MSDN Subscriber Downloads at:
http://msdn.microsoft.com/subscriptions/resources/subdwnld.asp or can
be purchased independently.

It is important to note that Visual Studio .NET 2003 creates binaries that
target the .NET Compact Framework. Only applications targeting the .NET
Compact Framework can be created for the Pocket PC platform using this
tool. To create native applications, you must use eMbedded Visual C++
4.0.

10.3.2 Emulation

Also part of .NET development is a new emulation environment. As
opposed to the previous emulator that used the Win32 APIs to draw and
execute the emulator, the new emulator runs the exact Pocket PC code
from within a virtual machine. It is a powerful high-fidelity device emulator
that is integrated within the Visual Studio .NET design environment. This
emulator accurately represents the physical device by executing the exact
target operating system on the developer's desktop, which runs actual
operating system images in a virtual machine. Emulation operating
systems for Pocket PC devices are provided. In fact, as new custom
devices based on Windows CE .NET emerge, their emulators can easily

http://msdn.microsoft.com/subscriptions/resources/subdwnld.asp

devCentral White Paper 32 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

be plugged into Visual Studio .NET to speed application development for
those devices.

10.3.3 Sample Applications

As with all other Microsoft development tools, there are plenty of sample
applications available with the .NET compact framework tools. Sample
applications are currently available demonstrating tasks and techniques in
the following areas:

! Creating WinForms applications

! Authoring components

! Creating custom controls

! Structured exception handling

! Calling and creating XML Web services

! Programming SQL Server CE databases

These sample applications are all available from Microsoft’s developer
Web site: http://msdn.microsoft.com.

http://msdn.microsoft.com/

devCentral White Paper 33 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

11. Programming Considerations

This section discusses programming considerations, including the
characteristics of wireless connections and some unique aspects of the
Pocket PC environment, including memory management, object store, the
property database, and UDP/TCP/IP sockets communications.

11.1 Characteristics of Wireless Connections

Common for all cellular-data networks, applications must take into account
data-throughput rates, latency, and connection characteristics. GPRS
offers typical throughput rates of 30 to 40 Kbps (depending on type of
device) and EDGE offers typical throughput rates of 110 to 130 Kbps. The
Siemens SX-56, for example, is a GPRS class 10 device that allows
downlink speeds using four time slots (40 Kbps effective maximum
throughput) and uplink speeds using two time slots (20 Kbps maximum).
These data rates support a wide range of applications. Developers should
also take pricing plans into account.

Note: Effective maximum throughput means the highest throughput rate
delivered to the actual application. Rates are sometimes quoted higher,
but include GPRS protocol overhead.

GPRS/EDGE networks have typical latency (or round trip time) of 600
milliseconds, as measured by ping using default (small) packet sizes. This
latency will affect the design of the application but not how a program is
written. For the end user delays can be noticeable, but if the application is
designed to minimize back and forth traffic, delays will not be excessive.
This is especially true for content tailored specifically to mobile devices.

It is important to understand the difference between latency and
bandwidth. Even though it is possible to achieve connection speeds
similar to a landline modem, latency is higher. This causes delays for data
items being accessed. For instance, an image may take a moment to
begin loading, but will load quickly thereafter. There is little a developer
can do to address this delay.

Another aspect of wireless connections, especially in mobile
environments, is that connections can be lost in out-of-coverage
situations. Though an application cannot prevent the loss of a connection,
it can deal with the results of a connection loss, or poor connection. One
approach is to cache data during a particular session so that if the

devCentral White Paper 34 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

connection fails, that piece of data does not have to be retrieved again.
This is particularly important for larger files and data. For example, if an
application is receiving a fairly large file or image, it should use a
mechanism to retrieve portions of the file at a time. If the connection fails
during the retrieval, the application should be able to pick up where it left
off. For instance, HTTP chunked data transfer (see Internet RFC 2616)
can be used to retrieve pieces of the requested file. Once all the pieces
are retrieved, they can be reassembled into the requested file. As part of
the architecture for handling poor connections, applications should also be
able to handle connections that are dropped.

In the case of a dropped connection, there are a couple of actions an
application can choose. First the application could attempt to automatically
re-establish the connection, and then give up after a certain time period if
a new connection could not be established. For system configurations that
support the Microsoft Connection Manager API, this could be done using
the ConnMgrEstablishConnection function.

Alternately, the application could prompt the user and only attempt to re-
establish the connection based on the user input. Unfortunately, an
application will not actually be notified that a connection has been lost. It is
up to the application to determine if the connection exists or has been
broken. Fortunately, this is simple enough to implement. If using sockets,
a call to connect would fail, indicating the physical connection has been
broken. Also the ConnMgrConnectionStatus function can be called on
system configurations that support the Microsoft Connection Manager API
to determine if the physical connection is still available. Ultimately, a
scheme should be used that checks the connection for failure after each
failed network operation. If the connection has failed, the application could
then attempt to reestablish the connection or prompt the user.

11.2 Memory Management

Proper memory management on the Pocket PC is extremely important
due to the relatively small amount of memory available. Applications must
always check that memory allocations succeeded and must be able to free
up memory not currently in use.

The memory architecture of Pocket PC is very similar to the desktop
versions of Windows. It supports a virtual address space in which pages
are mapped into physical memory. However, on the Pocket PC the virtual
address space is 2GB instead of 4GB. Also, when memory is allocated it
is not allocated from the paging file, but from physical memory. Page level

devCentral White Paper 35 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

memory access is available via routines such as VirtualAlloc and
VirtualFree. However, care must be taken using these routines, since the
page size differs between various devices. Typically, an application will be
written using the higher-level APIs such as alloc or free.

Although allocating and freeing memory is largely the same on the Pocket
PC as the desktop versions, careful consideration should be taken to
optimize memory usage. One cause of poor memory management is
fragmentation. As memory is allocated and freed the memory becomes
fragmented due to contiguous blocks not being available in a large enough
amount. Imagine a scenario where you allocate 10 KB, and then you
allocate 5 KB, and then you allocate 10 KB. If you now free the 5 KB of
memory, you will only be able to reuse that slot if your allocation is for 5
KB or less. Therefore if you allocate 10 KB, you will now be consuming 35
KB instead of 30 KB. Over time, these fragmentations can add up to
become a significant portion of your memory usage.

One way to prevent this is by using the heap allocation routines to
manage objects of the same size. Therefore, if your application always
allocates objects that are 10 KB and 5 KB, you could create two heaps
using the HeapCreate function. Anytime you needed a new 10 KB object,
you could allocate it from the first heap using HeapAlloc. Whenever you
needed a new 5 KB object you could allocate it from the second heap. In
this scenario you would be guaranteed not to fragment the memory. You
should typically only use this scenario when you are allocating a lot of
memory blocks of the same size or when all of your de-allocations occur
at once.

Memory status is much more important when programming for Pocket PC
versus a Windows desktop. If an application needs to allocate a large
amount of memory, it should determine first if the memory it requires is
available. This can be done using the GlobalMemoryStatus function. The
following sample application demonstrates its usage:

MEMORYSTATUS memstat;
GlobalMemoryStatus (&memstat);

_stprintf(_T(“Physical memory size: %d KB\n”), memstat.dwTotalPhys/1024);
_stprintf(_T(“Physical memory free: %d KB\n"), memstat.dwAvailPhys/1024);
_stprintf(_T(“Paging file size: %d KB\n"), memstat.dwTotalPageFile/1024);
_stprintf(_T(“Paging file free: %d KB\n"), memstat.dwAvailPageFile/1024);
_stprintf(_T(“Virtual memory size: %d KB\n"), memstat.dwTotalVirtual/1024);
_stprintf(_T(“Virtual memory free: %d KB\n"), memstat.dwAvailVirtual/1024);

In the above example, the printout would typically be something like:

devCentral White Paper 36 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

Physical memory size: 8192 KB
Physical memory free: 5324 KB
Paging file size: 0 KB
Paging file free: 0 KB
Virtual memory size: 32768 KB
Virtual memory free: 30152 KB

This paging file information will always be 0 KB since there is no paging
file. The virtual memory size will always be 32 MB since that is the amount
allocated to each process. In this example, the device has 8 MB of
physical memory. When running under emulation, 16 MB will always be
returned.

Using the information returned, you could programmatically take a
different course of action if there is not enough memory available to
perform an operation. You could free memory that is not currently being
used, or you could prompt the user to attempt to close other running
applications that may be consuming physical memory.

Three critical low memory events will typically take place in the following
sequence:

1. WM_HIBERNATE: This is the first of the low memory events that
occur. Applications should be ready to respond to this message.
The shell will send this message to the application that has been
inactive the longest, when memory is low (depending on device
page size) and a new allocation is attempted. An application should
free up any unused resources at this time and close any
unnecessary windows.

2. WM_CLOSE: This is the next of the low memory events. This
message will be sent when the device reaches a low memory
threshold. When an application receives this notification, it should
save any open documents without prompting the user and free all
resources.

3. Critical Memory Event: This is the last and most severe. At this
point the CE will not allow any new processes to be created.

11.3 Object Store

Pocket PC uses the Object Store for storing files, databases, and the
registry. The Object Store uses RAM for its storage. Unlike the desktop
versions of Windows, Pocket PC does not use drive letters for devices. It
uses a scheme very similar to that used in Unix variants. Devices are

devCentral White Paper 37 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

connected to the file system via folders in the Object Store. Just like on a
Unix system where you may access your CD-ROM drive by mounting it to
/mnt/cdrom, and then changing to that directory to read the contents, you
may have a storage card mounted to \Storage Card and be able to read
and write to that directory to read and write to the storage card.

On most Pocket PC devices, storage devices are typically removable.
Therefore, applications that require storage should be ready to respond to
the WM_DEVICECHANGE message. This message is sent whenever a
device is attached or removed. One exception to this rule is when the
Pocket PC is powered on. Pocket PC will send two
WM_DEVICECHANGE messages to indicate a device is being removed
and then inserted.

The following code snippet shows how you could capture the message
and perform some action based on whether a device was getting removed
or inserted:

case WM_DEVICECHANGE:
 switch (wParam)
 {
 case DBT_DEVICEARRIVAL:
 OnDeviceAdd ((DEV_BROADCATS_HDR*)lParam);
 break;
 case DBT_DEVICEREMOVECOMPLETE:
 OnDeviceRemove ((DEV_BROADCAST_HDR*)lParam);
 break;
 }
 break;

In the sample above, had you prompted the user to insert their media
device, you could then respond to that event in the OnDeviceAdd
function, and continue processing for the user.

11.4 Property Database

The property database in Pocket PC is a database that allows applications
to store structured data. The property database uses the Object Store for
its storage, and stores the databases in a folder called database. You will
find the standard databases in this folder, such as appointments, contacts,
and tasks databases.

Just like files and folders, each property in the database has a unique
Object ID (OID). This OID is used when accessing the property or record.
The Pocket PC API allows full access to properties with the ability to

devCentral White Paper 38 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

create, destroy, access, sort, and search a property database. The
following example shows how you would create your own property
database to store application relative data.

CEGUID ceguid;

if (CeMountDBVol (&ceguid, _T("\\Storage Card\\MyVolume.CDB"), CREATE_NEW))
{
 // TODO: Add code here to manipulate your new property database
}
else
{
 _stprintf(_T(“Error: could not create new property database.\n"));
}

In the example above, there are a couple items to notice. The
CeMountDBVol function is used to create this new database. This is
similar to how one might use the OpenFile function to create a new file.
CeMountDBVol can also be used with other flags such as
CREATE_ALWAYS, TRUNCATE_EXISTING, and so on. Another item to
notice is the path to the new database, \Storage Card\MyVolume.CDB.
This path is the root directory on an attached storage card.

Another interesting aspect of items in the property database is that up to
four sort orders can be associated with properties to speed up searching
for records. The following example shows how you might specify a sort
order for a property database containing stock tickers.

CEDBASEINFO cedbinfo;
cedbinfo.dwFlags = CEDB_VALIDSORTSPEC;
cedbinfo.wNumSortOrder = 1;
cedbinfo.rgSortSpecs[0].propid = MAKELONG (CEVT_LPWSTR, 100);
cedbinfo.rgSortSpecs[0].dwFlags = CEDB_SORT_CASEINSENSITIVE;

// Assumes ceguid has already been initialized with a call
// to CeMountDBVol. 100 is the OID of our particular database
//
CeSetDatabaseInfoEx (&ceguid, 100, &cedbinfo);

In the example above, you can see it is fairly simple to change the sort
order of one of the properties to be case insensitive. If the database
already has records, this process can be very time consuming; therefore,
you should prompt the user if necessary.

devCentral White Paper 39 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

11.5 UDP/TCP/IP Sockets Programming

If you are familiar with sockets programming, you will be familiar with
sockets programming on the Pocket PC platform. This paper assumes you
are already familiar with IP, TCP, and UDP fundamentals. The sockets
library included with Pocket PC is a subset of the sockets library available
on the desktop versions of Windows. The most notable functionality
missing from the sockets library is asynchronous support. This means that
functions such as WSAAsyncSelect are not supported. However, since
threads are available, it is possible to create a worker thread to perform
communications and still keep the user interface responsive.

When writing a sockets application for Pocket PC, the first thing to do is
initialize the sockets library. Calling the WSAStartup function does this.
The current version supported is 1.1; therefore, a code snippet to initialize
the sockets library would be:

WSADATA wsadata;
if(0 == WSAStartup (MAKEWORD(1,1), &wsadata))
{
 // Winsock has been initialized, do your comm. now
}
else
{
 // Winsock could not be initialized
}

Like most sockets functions, WSAStartup returns zero when successful,
and a non-zero value upon failure. To determine the reason for failure, call
WSAGetLastError. In order for sockets to be used, the Pocket PC must
have some sort of networking device attached. For the Siemens SX56,
sockets can be used via GPRS/EDGE with the built in cellular modem.
However, a GPRS/EDGE connection must first be established.

devCentral White Paper 40 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

12. Sample Application

The following sections show the implementation of the stock-quote sample
application using first the eMbedded Visual C++ environment, followed by
the Windows CE .NET environment.

12.1 eMbedded Visual C++

Development using eMbedded Visual C++ closely resembles application
development using Visual C++ for desktop applications. The main
differences are in building and debugging, and not necessarily the code
itself. The code in the sample application could actually be used with little
modification to create a similar application for the desktop. This means
that if you are already a Visual C++ developer, you will already be
comfortable with the development environment and will quickly be
productive writing code.

12.1.1 Set Up the Environment

You will need to configure your environment as follows:

1. Windows NT/2000/XP.

2. The latest service pack. This will vary depending on the OS you are
using for development. Check the latest installation requirements
for eMbedded Visual C++ 4.0 SP2.

3. Microsoft eMbedded Visual C++ 4.0 SP2.

4. Once you have your environment set up you will be ready to begin
creating the sample application.

12.1.2 Creating the Project

At this point, you should launch the eMbedded Visual C++ 4.0 Integrated
Development Environment (IDE). Once you have the IDE running, you will
notice that it is the same as the Visual C++ 6.0 IDE. Now that you have it
running, follow the steps below to get the base project created:

1. Select New… from the File menu.

2. On the New Projects dialog, select WCE Pocket PC 2003 MFC
Appwizard (exe) project type. Since we will be targeting the

devCentral White Paper 41 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

Siemens SX56 for our sample application we will be able to create
an MFC application for the Pocket PC.

3. In the Project Name field, type in StockQuote as the name of the
project.

4. Verify the directory the project will be created in is acceptable.

5. Ensure that at least Win32 (WCE ARM) and Win32 (WCE x86em)
are selected in the Projects list.

6. Click OK.

7. You should now see the Step 1 of 4 dialog. At this point select
Dialog Based as the type of application.

8. Click Next.

9. You should now see the Step 2of 4 dialog. Check the Windows
Sockets checkbox.

10. Click Next.

11. You should now see the Step 3 of 4 dialog. Click Next.

12. You should now see the Step 4 of 4 dialog. Click Finish.

13. You will now see a project summary dialog. Click OK.

At this point, the base project is created. You will notice during the project
creation you selected Windows Sockets support and created the project
to build with MFC as a shared DLL. The first option simply inserts a
#include <afxsock.h> in the stdafx.h file. This file, afxsock.h, essentially
just includes winsock.h, and defines some helper classes that can be
used to work with sockets.

Including MFC support as a shared DLL can be a more difficult decision. If
you are using MFC, you can choose to include it as a DLL or a shared
library. The advantage of including it as a DLL is that your application will
have a smaller footprint. However, you will have to be certain that the
variant of the OS supports MFC and has the mfcce300.dll available or
you will have to include it with your application distribution. If using MFC
as a static library, you will not have to worry about the presence of the
mfcce300.dll, but your application will have a much larger footprint. These
factors should be considered when developing and before deploying your
application. In the case of the Siemens SX56, the DLL is already included;
therefore, the shared DLL option was chosen to reduce the size of the
application.

devCentral White Paper 42 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

12.1.3 Writing the Code

1. First, you need to update the main dialog.

a. Click on the Resource tab, expand the Dialog folder, and open
the IDD_STOCKQUOTE_DIALOG dialog.

b. Three important items will be added to the dialog. The edit box
for the user to enter the ticker symbol, a button to obtain the
quote, and a text box to display the current quote. Add these
items to the dialog now with the following names: IDC_TICKER,
IDC_GETQUOTE, IDC_PRICE. Due to the form factor of the
Siemens SX56 display, the dialog is kept minimal.
Unfortunately, using the resource editor in this manner does not
allow the targeting of various form factors. You would have to
write specific code to resize and move windows based on
screen dimensions if you wanted your application to be
extremely portable.

Figure 1: Stock Quote Dialog Box

2. Now you will add some objects to our main dialog class to
represent each of the controls on the dialog. Open the file
StockQuoteDlg.h and edit it:

class CStockQuoteDlg : public Cdialog
{
public:

 CStockQuoteDlg(CWnd* pParent = NULL);

 //{{AFX_DATA(CStockQuoteDlg)
 enum { IDD = IDD_STOCKQUOTE_DIALOG };
 CEdit m_wndPrice;
 CEdit m_wndTicker;

devCentral White Paper 43 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

 CButton m_wndGetQuote;
 //}}AFX_DATA

 //{{AFX_VIRTUAL(CStockQuoteDlg)
 public:
 virtual BOOL DestroyWindow();
 virtual BOOL PreTranslateMessage(MSG* pMsg);
 protected:
 virtual void DoDataExchange(CDataExchange* pDX);
 //}}AFX_VIRTUAL

protected:

 HICON m_hIcon;

 //{{AFX_MSG(CStockQuoteDlg)
 virtual BOOL OnInitDialog();
 afx_msg void OnGetquote();
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()

private:

 bool m_bHaveWinsock;
};

You will notice a few things have been added. There are two CEdit
objects: One for the ticker and one for the price. There is a CButton
object added for the Get Quote button. Overrides for
DestroyWindow and PreTranslateMessage have been added. Their
implementations will be explained later. Finally a message handler,
OnGetQuote, has been added, which is called when the Get
Quote button has been pressed. If you are familiar with MFC
programming, you will notice this code is no different than what you
might write for a desktop application. Many functions and styles are
not available, but MFC for the Pocket PC is fairly complete. Most of
the limitations actually stem from the underlying Windows API used
by MFC.

3. Next, the window objects need to be hooked up. This can be done
by updating the default DoDataExchange implementation, which
was created by the wizard. By calling the DDX_Control function,
you can have MFC automatically wire a particular class variable to
a window. So update the function now to appear as follows:

void CStockQuoteDlg::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CStockQuoteDlg)
 DDX_Control (pDX, IDC_PRICE, m_wndPrice);
 DDX_Control (pDX, IDC_TICKER, m_wndTicker);

devCentral White Paper 44 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

 DDX_Control (pDX, IDC_GETQUOTE, m_wndGetQuote);
 //}}AFX_DATA_MAP
}

As you can see, the program simply passes in the ID of the control
and a reference to the object to be associated with that control.
This function will be called by the framework when the dialog is
created. It is also called when UpdateData is called to update
windows with the value of variables or vice versa.

4. Moving down through the file, you can now update the message
map. MFC uses several macros to enable a function call to be tied
to a windows message. You can simply update the message map
so that when the user presses the Get Quote button, the
OnGetQuote function will be called. So update the message map
as follows:

BEGIN_MESSAGE_MAP(CStockQuoteDlg, CDialog)
 //{{AFX_MSG_MAP(CStockQuoteDlg)
 ON_BN_CLICKED(IDC_GETQUOTE, OnGetquote)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

5. Now you need to update the OnInitDialog function that was created
with code to initialize the sockets library. You can call the function,
WSAStartup, to attempt this. The important parameter to pass is
the version of Winsock you need loaded. At the time of this writing,
version 1.1 is supported by the Pocket PC. So now update the
OnInitDialog function to appear as follows:

BOOL CStockQuoteDlg::OnInitDialog()
{
 // This will be set to false if we can initialize Winsock
 // This will allow us to set focus to the ticker edit window
 //
 bool bRet = true;

 CDialog::OnInitDialog();

 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon
 CenterWindow(GetDesktopWindow());
 // center to the hpc screen

 // Attempt to start up Winsock 1.1
 // WSADATA wsad;
 if (0 == WSAStartup (0x0101, &wsad))
 {
 m_bHaveWinsock = true;

devCentral White Paper 45 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

 m_wndTicker.SetFocus ();
 bRet = false;
 }
 else
 {
 // Notify the user and disable some of our controls
 //
 MessageBox (_T("Unable to start up Winsock.\n"Please ensure you
have a network device
 Connected and enabled."),
 _T("StockQuote Error"),
 MB_OK | MB_ICONERROR);

 m_bHaveWinsock = false;

 m_wndTicker.EnableWindow (FALSE);
 m_wndGetQuote.EnableWindow (FALSE);
 }

 // return true unless we were able to init Winsock &
 // set focus to the ticker window

//
return bRet;

}

6. As you may have noticed, the program added an override for the
PreTranslateMessage function. The reason for this is that the
application is a dialog based application and uses the default dialog
box procedure. The problem is, when the user presses the Enter
key, the default action is to close the dialog. On the Siemens SX56,
the Enter key can be activated using the touch screen keyboard or
via the center button below the screen. Unfortunately, it is
instinctive to press the Enter key after typing in a ticker symbol.
Therefore, the program needs to override the
PreTranslateMessage function to catch instances when the user
has pressed the Enter key, and convert that message to appear as
though the user pressed the GetQuote button. So, update the
PreTranslateMessage function to appear as follows:

BOOL CStockQuoteDlg::PreTranslateMessage(MSG* pMsg)
{
 // This is here to make usage a little easier.
 // - Check to see if the 'Enter' key was pressed
 // - If so, and the focus is in the ticker window
 // - Treat as though the 'GetQuote' button was pressed
 //
 if (pMsg->message == WM_KEYDOWN && pMsg->wParam == VK_RETURN)
 {
 if (GetFocus ()->m_hWnd == m_wndTicker.m_hWnd)
 {
 PostMessage (WM_COMMAND, BN_CLICKED << 16 | IDC_GETQUOTE,
 (LPARAM)m_wndGetQuote.m_hWnd);

devCentral White Paper 46 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

 return TRUE;
 }
 }

 return CDialog::PreTranslateMessage(pMsg);
}

7. At this point, you can skip ahead to see how the quote is actually
retrieved. All of the work to deal with retrieving the quote has been
wrapped into a class called CQuoteInfo. This class has two public
functions and a single helper function. The first function, GetPrice,
is used to actually retrieve the current price based on a passed-in
ticker symbol. The next function, Init, exists to allow the IP address
of the stock quote service to be looked up just once, when the user
first requests a quote, and then stored for use in subsequent
quotes. This increases application performance and decreases
network bandwidth usage, which is extremely important in mobile
applications. The final function, FormatRequest, will create a basic
HTTP request string based on the ticker symbol. GetPrice only
ever calls this function. The following is the code for the GetPrice
function:

bool CQuoteInfo::GetPrice (const CString& cstrTicker, float& flPrice)
{
 bool bRet = false;

 if (Init ())
 {
 SOCKET sockNew = socket (AF_INET, SOCK_STREAM, 0);

 if (sockNew != INVALID_SOCKET)
 {
 sockaddr_in sai = {0};
 sai.sin_addr = m_addrQuoteService;
 sai.sin_family = AF_INET;
 sai.sin_port = htons (80);

 if (0 == connect (sockNew, (sockaddr*)&sai, sizeof (sai)))
 {
 CString cstrReq;
 FormatRequest (cstrTicker, cstrReq);

 // Unfortunately, we need to send as ASCII, not
UNICODE
 char szReq[1024];
 int nSendLen = WideCharToMultiByte (CP_ACP,
 0, cstrReq, min (sizeof(szReq)-1,
cstrReq.GetLength
 ()), szReq, sizeof (szReq), NULL,
NULL);

devCentral White Paper 47 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

 if (send (sockNew, szReq, nSendLen, 0) ==
nSendLen)
 {
 // Get the response at this point
 CString strResponse;
 char szRecvBuf[1024];
 while (1)
 {
 int nRecv = recv (sockNew,
szRecvBuf, sizeof
 (szRecvBuf), 0);
 if (nRecv == 0 || nRecv ==
SOCKET_ERROR)
 {
 break;
 }

 wchar_t wszRecvBuf[1024];
 MultiByteToWideChar (CP_ACP,
0, szRecvBuf, nRecv,
 wszRecvBuf, sizeof (wszRecvBuf));
 strResponse += wszRecvBuf;
 }

 if (strResponse.GetLength ())
 {
 // Look for our symbol quoted
 CString cstrSym = _T("\"");
 cstrSym += cstrTicker;
 cstrSym += _T("\",");

 int nFind = strResponse.Find
(cstrSym, 0);
 if (nFind != -1)
 {
 nFind +=
cstrSym.GetLength ();
 swscanf
((LPCTSTR)strResponse + nFind, _T("%f"),
 &flPrice);
 bRet = true;
 }
 }
 }
 }

 closesocket (sockNew);
 }
 }

 return bRet;}

The first thing this function does is call the Init function. Init will
perform a DNS lookup on the server being used for the quote
service and will then cache the IP address. If Init returns
successfully, the program will now create a new socket with a call

devCentral White Paper 48 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

to the socket function. The program will then call the connect
function to connect to the stock quote server.

Note: Many socket functions return zero when they are
successful. So, be cautious when analyzing the return codes as this
is a large source of defects when programming with Winsock.

It is also important to note that for a wireless device, connect will
not actually establish a link via a GPRS/EDGE or other networking
device. It will only attempt to establish the TCP link over an existing
route. Therefore, if your application is responsible for acquiring a
link, the link should be established before your socket calls are
made.

8. The program can then call FormatRequest to create the HTTP
request string and then send the request to the server using send.
You will notice that send returns a positive value equal to the
number of bytes sent when it is successful. The program will then
retrieve the response using the recv function. This function will
return zero when the server has closed the connection. The
program will simply loop through receiving data until the connection
has been terminated. Ideally, since this is a mobile application, you
would like to keep the connection open as long as the application is
open to minimize network bandwidth usage. Unfortunately, the
quote server does not support keeping the connection open
indefinitely. If you had the opportunity to design all aspects of this
system, this would be an important consideration when developing
the server application.

9. Finally, the program will attempt to extract the price from the return
string. As you can see, the program looks for the ticker symbol in
the return string, and then extracts the next comma-separated
value. Ideally, the program would parse the HTTP headers and
body to extract all the information needed, but for the sake of
brevity and simplicity in this sample application, the program will
extract exactly what is needed from the return string.

12.1.4 Connection Manager

As stated in the previous section, the program must have a connection
over some networking device before the program can create a sockets
connection. In order to achieve this, there is a new set of functions
available for Pocket PC 2002/2003: the Connection Manager API. These
functions abstract all of the underlying details of obtaining the connection.
In the situation where multiple network devices are available, the module

devCentral White Paper 49 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

will automatically determine the best device to use based on the route to
the resource requested.

For complete documentation on the Connection Manager API, see the
Pocket PC 2002/2003 SDK (Referenced in Section 1.3.2). In the sample
application, you will use just a few of the functions available to create the
connection: ConnMgrApiReadyEvent, ConnMgrMapURL,
ConnMgrEstablishConnectionSync, ConnMgrConnectionStatus, and
ConnMgrReleaseConnection. ConnMgrApiReadyEvent will be called
to ensure that the connection manager subsystem is started and ready to
accept requests. The ConnMgrMapURL function is used to get a Global
Unique Identifier (GUID) that represents the network to use for the
resource you are attempting to access. Basically, you call the function with
the URL or resource you are going to access, and the function will return a
GUID for use with the ConnMgrEstablishConnctionSync function.

At this point, ConnMgrEstablishConnectionSync is called to actually
create the connection. If it returns successfully, you are now free to use
sockets or other higher level APIs to access your network resource. In the
case of the sample application, the program uses the connect, send, and
recv functions at this point to get the stock quote. It is also important to
note that the Connection Manager API functions return HRESULT types.
Therefore you should always use the SUCCEEDED or FAILED macros to
determine the result of a function, unless you are looking for a certain
result code. Comparing with values such as S_OK or E_FAIL will
ultimately lead to programming errors.

class CconnMgr
{
public:
 CConnMgr ()
 {
 m_hConnection = INVALID_HANDLE_VALUE;
 m_bFailed = false;
 m_bStarted = false;
 }

 ˜CConnMgr ()
 {
 if (m_hConnection != INVALID_HANDLE_VALUE)
 {
 ConnMgrReleaseConnection (m_hConnection, true);
 CloseHandle (m_hConnection);
 }
 }

 bool IsConnected ()

devCentral White Paper 50 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

 {
 bool bRet = false;
 if (m_hConnection != INVALID_HANDLE_VALUE)
 {
 DWORD dwStatus;
 if (SUCCEEDED(ConnMgrConnectionStatus (m_hConnection,
&dwStatus)))
 {
 bRet = CONNMGR_STATUS_CONNECTED & dwStatus ? true :
false;
 }
 }
 return bRet;
 }

 bool Start ()
 {
 if (!m_bStarted)
 {
 HANDLE hWait = ConnMgrApiReadyEvent();
 if (hWait != INVALID_HANDLE_VALUE)
 {
 if (WAIT_OBJECT_0 == WaitForSingleObject (hWait,
60*1000))
 {
 m_bStarted = true;
 }
 CloseHandle (hWait);
 }
 }

 return m_bStarted;
 }
 bool Connect (HWND hwnd)
 {
 bool bRet = false;
 if (Start () && !m_bFailed && !IsConnected ())
 {
 // Find the guid for our network
 CONNMGR_CONNECTIONINFO ci = {0};
 TCHAR szUrl[] = _T("http://quote.yahoo.com/");
 DWORD dwIndex = 0;
 if (SUCCEEDED (ConnMgrMapURL (szUrl, &ci.guidDestNet,
&dwIndex)))
 {
 // Attempt to connect us
 ci.cbSize = sizeof (ci);
 ci.dwParams = CONNMGR_PARAM_GUIDDESTNET;
 ci.dwPriority = CONNMGR_PRIORITY_USERINTERACTIVE;
 ci.dwFlags = CONNMGR_FLAG_PROXY_HTTP;
 ci.bExclusive = false;
 ci.bDisabled = false;
 ci.lParam = (LPARAM)0;
 DWORD dwStatus = 0;
 HRESULT hrRet = S_OK;
 if (SUCCEEDED(hrRet = ConnMgrEstablishConnectionSync
(&ci, &m_hConnection, 30*1000, &dwStatus)))
 {

devCentral White Paper 51 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

 bRet = dwStatus & CONNMGR_STATUS_CONNECTED ?
true : false;
 }
 else
 {
 CString cstr;
 cstr.Format (_T("ConnMgr fail - %08lX"),
hrRet);
 MessageBox (hwnd, cstr, _T("ConnMgr error"),
MB_OK);
 }
 }
 else
 {
 MessageBox (hwnd, _T("Could not map URL"), _T("Map
URL Error"), MB_OK);
 }
 }
 if (bRet == false) m_bFailed = true;
 return bRet;
 }private: HANDLE m_hConnection; bool m_bFailed;
 bool m_bStarted;};

As you can see from the code snippet above, all of the connection
manager functionality that we use in the sample application has been
wrapped into a clean and easy to use class. At this point, the class can be
used by our main dialog class to ensure that a connection exists before
attempting to get a stock quote.

12.1.5 Debugging

Debugging an application on a Pocket PC is similar to application
debugging on a PC. The first rule is to always attempt to perform the
debugging using the emulator. The main reason for this is speed;
debugging on the emulator is significantly faster than debugging on the
real device. You can easily set breakpoints and single step through your
code. However it is not always possible to do this, especially when the
error only occurs on the real device.

One area where you will encounter this problem is working with network
connections. You will notice when your PC is running in the emulator, as
long as your PC has a network connection, the application will always
perform correctly and fetch the quote quickly. However, when attempting
to run the application, on an actual device like the SX56, you may get the
message Unable to retrieve quote. This means you will have to perform
debugging on the device to see where it is failing.

Debugging on the device is similar, except that it is significantly slower
when single stepping the code. This is due to the amount of

devCentral White Paper 52 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

communication occurring between the CE device and the PC over the
USB cable. Because of this, strategies should be built into your code to
minimize the amount of single step debugging that needs to take place.
First, always be specific about the error condition that caused failure and
report this in the user interface. This may allow you to pinpoint the error
without having to debug at all. This may also mean you need to debug
specific handling since you may not be allowed to display this level of error
to the user.

Another approach is to simply use debug printing to display the error. This
can be done with the OutputDebugString function. Messages printed
using this function will be caught and displayed by the connected
debugger. When you are in the eMbedded Visual C++ environment, you
simply have to select Build#Start Debug# Go. Then make sure the
output window is visible. Now you can run the application through the
steps used to produce the error, and you will see your debug messages
printed to the output window of the development environment.

This approach works well for isolating the location of the error, since the
application runs at nearly full speed when you are not single stepping
through the code. It is also advisable to not print out debug messages in
production code, unless you are targeting a developer program for your
production build, such as a beta program. For this reason, you should use
a wrapper such as the following to allow debug printing to be compiled out
of release builds:

devCentral White Paper 53 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

#ifdef _DEBUG
#define OUTDEBUGMSG(x) \
{\
 OutputDebugString (x);\
}
#else

#define OUTDEBUGMSG(x) {}
#endif

12.1.6 Summary

At this point the application is complete. Not all of the source code has
been listed in the body of this document, so you should extract the code
from the AT&T Wireless developer Web site and then build it. See
http://www.attwireless.com/developer/technologies/pocketPC/

For simplicity, the sample code does not attempt to reestablish a lost
connection, but your applications should attempt to do so. For your first
build, you should use the x86em debug build. This will build the
executable for the emulation environment. You will then be able to run and
debug the application just like any other Windows application. You can set
breakpoints in your code and step through it just as you would with Visual
C++. Once you have run the code and debugged it, you should then build
it for the target device. For the Siemens SX56 case this is the ARM
release build. Once you built it, you can upload it to the device using the
ActiveSync program. The default project settings will attempt to do this for
you when you build a non-emulation target. By default, it will place your
new executable in the \Windows\Start Menu folder, so it will appear on
the start menu of the device.

You should now have a good understanding of how to develop, build, and
debug an application using eMbedded Visual C++ 4.0 SP2. If you have
developed using Visual C++ before, then most of the environment should
be very familiar to you. You should also note that most of the code is
identical to what would be written for a desktop application. Some of the
important differences are due to limitations in the Windows API, such as
Unicode-only support. This means that if your project requires
communication to standard services, such as HTTP or FTP, you will likely
be performing many conversions to and from Unicode. Therefore, you
should take care to perform these conversions as efficiently as possible.

http://www.attwireless.com/developer/technologies/pocketPC/

devCentral White Paper 54 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

On the positive side, writing the code to work with Unicode makes
translation to multiple languages much easier. Other considerations to
keep in mind are the availability of particular DLLs that may affect which
libraries you can use and how you must link to them. If your application
footprint becomes too large, you may have to resort to lower-level
libraries. For instance, size can be reduced by not using MFC, but user
interface code can be slightly more complicated.

12.2 Visual Studio.NET 2003

Windows CE .NET 4.2 is the newest version of the Windows CE operating
system. The .NET suffix on the name refers to the inclusion of the .NET
Compact Framework runtime that is bundled with Windows CE .NET.

It is important to note that the .NET Compact Framework is not the same
as Windows CE .NET. Windows CE .NET implies Microsoft including
embedded platforms in their strategic .NET initiative. Therefore, when
building applications, either native (unmanaged) or managed applications
can be created. To fully embrace .NET, the sample application outlined in
this section, is written using Visual Studio .NET 2003 to target the .NET
Compact Framework.

12.2.1 Set Up the Environment

In order to create applications that target Pocket PC 2003 you have the
choice of the following tools:

! eMbedded Visual C++ 4.0

! Visual Studio .NET 2003

The optimal choice is to use Visual Studio .NET 2003. This is because it is
a full-featured IDE with support for development of an expansive number
of targets. From the same IDE .NET Compact Framework, .NET
Framework, ASP .NET, SQL Server, and native applications (for desktop
Windows only) can all be developed. If you are already familiar with the
Visual Studio .NET IDE, then development for the .NET Compact
framework will be almost identical. The only limitation will be the amount of
functionality available via the .NET classes. Another advantage is the
choice of languages you will have available. C# is the only language
available that fully addresses .NET Compact Framework development as
it was designed to take full advantage of that environment. It also has

devCentral White Paper 55 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

several other miscellaneous benefits, such as automatic documentation
generation, that are not available yet in the other .NET languages.

eMbedded Visual C++ 4.0 can be used to target the Windows CE .NET.
However, it does not take advantage of the .NET Compact Framework.
Therefore the applications that you create with it will be unmanaged. It
mainly takes advantage of many of the new features available with
Windows CE .NET, such as C++ exception handling.

For our second sample application, we will utilize the new .NET Compact
Framework, and therefore use Visual Studio .NET 2003.

It is important to note that Visual Studio .NET 2003 can only be used to
create managed applications, and eMbedded Visual C++ 4.0 can only be
used to create native applications.

12.2.2 Creating the Project

Creating the stock quote project is fairly straightforward:

1. Launch Visual Studio .NET 2003

2. Click New Project

3. Select Visual C# Projects from the Project Types tree.

4. Select the Smart Device Application type on the right side of the
dialog and click OK.

A new dialog will be displayed allowing you to select the type of
Smart Device Application you want to create.

5. Select Pocket PC and Windows Application and click OK. This will
create a new WinForms project.

At this point your project should be open, displaying the form designer for
the main window form. For VB developers, the form designer should look
very familiar. For C++ developers the form designer should be a welcome
sight.

The forms designer allows you to drag and drop controls onto the form
window and then updates the properties of the controls from the
Properties tab on the lower right corner of the screen. C++ developers are
used to performing all these steps manually from within the code itself.

Under the covers, the appropriate code is automatically generated for you
based on the properties, size, and window position of each of the controls

devCentral White Paper 56 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

you manipulate. This code is generated in a function called
InitializeComponent. A call to this function is then automatically placed
within the constructor for the class. This saves a significant amount of time
in the initial development process. Instead of spending time writing code
dealing with window sizes and positions, you can now concentrate on
writing code to perform the application logic itself.

12.2.3 Porting the Code

Once you have added the appropriate controls to the form to make this
application appear the same as the first sample, you will now be ready to
start writing code to perform the stock-quote fetch.

The code that is created for the getquote_click handler is much simpler
than the first sample application. You will first notice that you don’t
manually get the window text from the controls. It is simply a property that
can be accessed. You will also notice there are no raw socket calls within
the handler. The .NET Compact Framework makes a class called
HttpWebRequest available. This is the class used to retrieve the stock
quote. The program calls the Create function to create the HTTP request
to the URL that is provided. Then the program calls the GetResponse
function to retrieve the response from the request, which returns an
HttpWebResponse object. The program can then use the properties of
this object to get the price information for the stock ticker.

In the current version of the .NET Compact Framework there is an issue in
the HttpWebResponse implementation that throws an exception due to
an invalid HTTP header in the response from quote.yahoo.com. The
sample application uses a workaround for this problem. Microsoft is aware
of this problem and will be addressing it in a future release of the .NET
Compact Framework.

12.2.4 Connection Management

Unfortunately, the Connection Manager API has not been exposed via a
built-in .NET class. This means that in order to use it you will have to
create a class that calls into unmanaged code using the interop services
available with .NET. One of the interops, COM Interop, allows wrappers
for COM interfaces to be automatically created and used. This is typically
the easiest route to go if there is a COM interface exposed that you can
use. However, the .NET Compact Framework does not currently support

devCentral White Paper 57 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

COM Interop. Therefore, you can use the second choice, which allows us
to call functions exported from any DLL.

In the case of our sample application, the functions required are exported
from cellcore.dll. Therefore, go ahead and create the following definitions
that allow you to call the API functions exported from cellcore.dll.

public class ConnMgrWrap
 {
 [DllImport("Coredll.dll")]
 public static extern UInt32 WaitForSingleObject (IntPtr handle,
UInt32 dwWait);
 [DllImport("Coredll.dll")]
 public static extern UInt32 CloseHandle (IntPtr handle);
 [DllImport("cellcore.dll")]
 public static extern IntPtr ConnMgrApiReadyEvent ();
 [DllImport("cellcore.dll")]
 public static extern Int32 ConnMgrReleaseConnection (IntPtr hConn,
UInt32 bCache);
 [DllImport("cellcore.dll")]
 public static extern Int32 ConnMgrConnectionStatus
 (IntPtr hConn, ref UInt32 dwStatus);
 [DllImport("cellcore.dll")]
 public static extern Int32 ConnMgrMapURL
 (string strUrl, ref System.Guid guidNet,
 ref UInt32 dwNextIndex);
 [DllImport("cellcore.dll",
EntryPoint="ConnMgrEstablishConnectionSync")] public static extern Int32
ConnMgrConnectSync
 (ref CONNMGR_CONNECTIONINFO connInfo, ref IntPtr ptrhConn,
UInt32 dwTimeout,
 ref UInt32 dwStatus);
 private static UInt32 WAIT_OBJECT_0 = 0;
 private static UInt32 CONNMGR_STATUS_CONNECTED = 16;
 private static UInt32 CONNMGR_PARAM_GUIDDESTNET = 1;
 private static UInt32 CONNMGR_PRIORITY_USERINTERACTIVE = 0x08000;
 private static UInt32 CONNMGR_FLAG_PROXY_HTTP = 1;
 private IntPtr m_hConnMgr = IntPtr.Zero;
 private bool m_bStarted = false; ˜ConnMgrWrap ()

 {
 if (m_hConnMgr != IntPtr.Zero)
 {
 ReleaseConnection ();
 }
 }

 private static bool Success (Int32 hResult)
 {
 return hResult >= 0;
 }

 public bool Start ()
 {
 if (!m_bStarted)
 {
 IntPtr handleWait = ConnMgrApiReadyEvent ();

devCentral White Paper 58 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

 if (handleWait != IntPtr.Zero)
 {
 // Wait for our event for up to 60 seconds
 UInt32 nWaitRet = WaitForSingleObject
(handleWait, 60 * 1000);
 if (nWaitRet == WAIT_OBJECT_0)
 {
 m_bStarted = true;
 }
 CloseHandle (handleWait);
 }
 }
 return m_bStarted;
 }

 /// <summary>
 /// Uses the connection manager api to determine if we have
 /// a physical connection or not /// </summary>
 /// <returns>true - there is a connection
 /// false - there is not a connection</returns>
 public bool IsConnected ()
 {
 bool bRet = false;
 if (Start ())
 {
 if (m_hConnMgr != IntPtr.Zero)
 {
 UInt32 dwStatus = 0;
 if (Success (ConnMgrConnectionStatus
(m_hConnMgr,
 ref dwStatus)))
 {
 bRet = (dwStatus &
CONNMGR_STATUS_CONNECTED) > 0;
 }
 }
 }

 return bRet;
 }

 /// <summary>
 /// Attempts to create a physical connection using the connection
 /// manager apis
 /// </summary>
 /// <param name="strUrl">A url that describes the network we would
 /// like to connect to</param>
 /// <returns>true - connection was established
 /// false - connection could not be established</returns>
 public bool Connect (string strUrl)
 {
 bool bRet = false;
 if (!IsConnected ())
 {
 CONNMGR_CONNECTIONINFO cmgrInfo = new
CONNMGR_CONNECTIONINFO ();
 UInt32 dwIndex = 0;
 if (Success (ConnMgrMapURL (

devCentral White Paper 59 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

 strUrl, ref cmgrInfo.guidDestNet, ref
dwIndex)))
 {
 // Now attempt to perform the sync.
Connection
 cmgrInfo.dwSize = (UInt32)Marshal.SizeOf
(cmgrInfo);
 cmgrInfo.dwParams =
CONNMGR_PARAM_GUIDDESTNET;
 cmgrInfo.dwPriority =
CONNMGR_PRIORITY_USERINTERACTIVE;
 cmgrInfo.dwFlags = CONNMGR_FLAG_PROXY_HTTP;
 cmgrInfo.bExclusive = 0;
 cmgrInfo.bDisabled = 0;
 cmgrInfo.lParam = 0;
 cmgrInfo.hWnd = IntPtr.Zero;

 UInt32 dwStatus = 0;
 Int32 nRet = 0;
 UInt32 dwTime = 30*1000;
 if (Success (nRet = ConnMgrConnectSync (ref
cmgrInfo,
 ref m_hConnMgr, dwTime, ref
dwStatus)))
 {
 bRet = (dwStatus &
CONNMGR_STATUS_CONNECTED) > 0;
 }
 }
 }
 return bRet;
 }

 /// <summary>
 /// Releases the connection. Does not necessarily disconnect, but
 /// will if no other applications have an open handle to the same
 /// physical connection
 /// </summary>
 /// <returns>true - successfully released the connection
 /// false - could not release the connection</returns>
 public void ReleaseConnection ()
 {
 if (m_hConnMgr != IntPtr.Zero)
 {
 ConnMgrReleaseConnection (m_hConnMgr, 1);
 m_hConnMgr = IntPtr.Zero;
 }
 }
 }

 [StructLayout (LayoutKind.Sequential)] public struct
CONNMGR_CONNECTIONINFO
 {
 public UInt32 dwSize; // native DWORD
 public UInt32 dwParams; // native DWORD
 public UInt32 dwFlags; // native DWORD
 public UInt32 dwPriority; // native DWORD
 public UInt32 bExclusive; // native BOOL
 public UInt32 bDisabled; // native BOOL

devCentral White Paper 60 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

 public System.Guid guidDestNet; // native GUID
 public IntPtr hWnd; // native HWND
 public UInt32 uMsg; // native UINT
 public UInt32 lParam; // native LPARAM
 public UInt32 ulMaxCost; // native ULONG
 public UInt32 ulMinRcvBw; // native ULONG
 public UInt32 ulMaxConnLatency; // native ULONG
 }

The first part of the class above describes several functions that are
exported from unmanaged DLLs.

! The DllImport attribute is used to tell the C# compiler that the
following function definition must be imported from the specific DLL.

! The WaitForSingleObject and CloseHandle calls are required to
make sure the Connection Manager is ready and to close the
handle once the ready event has been fired.

The remainder of the functions should be familiar; they are the same
functions used in the C++ sample application. The remainder of the class
just describes the C# functions that will be called from the StockTicker
class when attempting to make sure there is a physical connection ready
before any attempts to retrieve a stock quote. Now you can create a new
instance of the ConnMgrWrap class inside the StockTicker class.

Before attempting to retrieve a stock quote, IsConnected is called. If
IsConnected returns false, then Connect is called to attempt to make the
physical connection. You will also notice in the destructor of the
StockTicker class, ReleaseConnection is called. This ensures that when
the application is shut down, the Connection Manager closes the
connection if no other applications are currently using it.

12.2.5 Summary

As you can see from this sample application, it contains much less code
and was easier to create than the first one. Much of this is due to the form
designer and the overabundance of well-designed classes that the
compact framework makes available. For instance, much of the windowing
information is easily available via class properties.

There are also many classes such as HttpWebRequest that can simplify
common tasks. Deployment can also be simplified, since there is no
processor-specific code generated. This means that a single binary can be
deployed on all supported devices. However, if native code is used, such
as the Connection Manager, then that native code must be ported to all

devCentral White Paper 61 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

devices. Fortunately, the Connection Manager (cellcore.dll) is part of the
operating system, and so this is not an issue for the sample application.
But if your application needed to use an in-house DLL that DLL would
have to be made available for all devices you intend to support.
Consequently, this limits the benefit of deployment simplicity.

As the sample illustrated, there are also many pitfalls. If functionality has
not been put directly into the .NET Compact Framework, like the
Connection Manger, then you must wrap this functionality into the
application. This can be error prone and difficult to debug. Many VB
developers are probably familiar with this issue.

There is also the issue of performance to consider when using the .NET
Compact Framework. Since the IL code must be compiled at runtime to
native code, this makes load-up times slower, and in many cases, the
native code that is generated will also be significantly slower. Microsoft
does claim, however, that for most code, the speed will be nearly identical
to what a native compiled binary would be.

In conclusion, developing for the .NET compact framework can save
considerable time and just like any new technology, there is a learning
curve that must be taken into consideration before gaining confidence in
being able to make good development decisions.

12.3 ASP.NET

ASP.NET is not a technology specific to mobile application development.
It allows developers to create Web content and services that utilize the
.NET framework. However, much of the design of ASP.NET is centered on
mobile application development.

12.3.1 Choosing ASP.NET

A developer would typically choose to develop an ASP.NET Web-based
application for several reasons. Intranet applications lend themselves well
to ASP.NET. ASP.NET also allows the system administrator to simply
deploy the application on a single Web server. This eliminates costly
installations to perhaps hundreds of computers and devices. If the
application utilizes a database for its functionality, an ASP.NET Web
application can greatly simplify application development. Instead of each
client device connecting directly to a database, they can connect to the
Web server. The Web server can then manage the communication with

devCentral White Paper 62 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

the database. This is especially beneficial when the devices are using
connections such as GPRS/EDGE to access the application functionality.

The stock-quote application itself could be Web-based. The user could
then just connect to page and retrieve quotes. This would also eliminate
portability and deployment issues.

It is important to note that Pocket Internet Explorer does not support all
HTML capabilities. The following table lists supported and unsupported
features.

Table 5: Supported and Unsupported Browser Features

Supported Features HTML 4.01
Extended HTML (XHTML), XML
Cascading Style Sheets (CSS)
WAP support, WSP, WML 2.0, WMLSCRIPT, WBMP
ActiveX support, with sourced events
Enhanced scripting and Document Object Model (DOM)
support
New extensible imaging library
No auto-download, must be preinstalled
Not affected by "Fit to Screen" option
Macromedia Flash
Image Maps
Framesets
Security, SSL 2.0 and 3.0
40 Bit encryption
128 Bit encryption (add on for PPC 2000)
Microsoft Jscript version 5.5

Unsupported
Features

DHTML full implementation
Client-side VBScript
Animated GIFs
Multiple Windows
Java applets

12.3.2 Advantages and Disadvantages

The following advantages are gained by using ASP.NET:

! Eliminates Deployment Issues: Your application does not have to
be deployed to every machine that is going to use it. It must simply
be copied to a Web server or a Web farm for deployment.

! Portability: The application does not have to be compiled for each
mobile processor with which you intend to deploy. Since only
HTML and script are returned to the client, any device with a
browser can access and use the application.

devCentral White Paper 63 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

! Speed of Development: Since the application does not have to be
tested and debugged on multiple devices, development time is
reduced. And because you are relying on the browser as the user
interface engine, there is no client code to create.

There are, however a number of disadvantages:

! Constrained User Interface: Since you do not have all the user
interface elements with HTML that you have on Windows CE itself,
the user interface cannot be as elaborate. This can typically result
in a user interface that is slow and cumbersome, since many steps
may be required to complete the same task.

! Performance: Since the entire user interface is rendered in HTML
over a potentially slow network connection, performance will be
significantly slower.

! Requires Network Connection: In order for your application to be
useful, the user must be able to establish a connection to the Web
server. If you intend for your application to also be usable in an
offline state, then a Web-based approach is not suitable.

12.3.3 Application Porting

Porting your application to ASP.NET can be simple or it can be complex.
In the case of the stock quote sample, it would be fairly straightforward,
using the following steps:

1. Create the Web form layout

2. Add the same controls you had in the CE application

3. Copy in code that retrieves quote data from the stock quote
provider

4. Create appropriate error pages

Fortunately, ASP.NET will handle generating the markup. This means that
based on the request, it can generate the appropriate HTML or WML for
the device, and size it appropriately.

However, if your application is more complicated, you will probably have to
redesign the flow of the user interface before you attempt to port it. Once
you have redesigned the user interface elements, you can then begin to
port the application. Fortunately ASP.NET does provide many controls
specifically for mobile development. These are called the ASP.NET
Mobile Controls, formerly known as the Microsoft Mobile Internet Toolkit

devCentral White Paper 64 10/15/03
12588 Rev. 2.0 © 2003 AT&T Wireless

Developing Applications for Pocket PC and GPRS/EDGE

(MMIT). These controls extend the power of the .NET framework and
Visual Studio .NET to build mobile-Web applications by enabling
ASP.NET to deliver markup to a wide variety of mobile devices. For more
information on the usage and power of ASP.NET mobile controls visit
http://www.asp.net/mobile/intro.aspx.

http://www.asp.net/mobile/intro.aspx

	Introduction
	Audience
	Contact Information
	Resources
	AWS Resources
	Microsoft Resources
	3GPP Resources
	Other Resources

	Terms and Acronyms

	Overview: Developing for Pocket PC
	Types of Devices
	Connection Management
	Power Management
	Security
	Voice Call Control
	Short Message Service (SMS) and SIM Access
	Bluetooth Integration
	Software Development Tools
	eMbedded Visual C++
	Windows CE Platform SDK
	SDK Emulation Environment
	SDK Tools
	SDK Sample Applications for Pocket PC

	.NET Compact Framework
	Overview
	Emulation
	Sample Applications

	Programming Considerations
	Characteristics of Wireless Connections
	Memory Management
	Object Store
	Property Database
	UDP/TCP/IP Sockets Programming

	Sample Application
	eMbedded Visual C++
	Set Up the Environment
	Creating the Project
	Writing the Code
	Connection Manager
	Debugging
	Summary

	Visual Studio.NET 2003
	Set Up the Environment
	Creating the Project
	Porting the Code
	Connection Management
	Summary

	ASP.NET
	Choosing ASP.NET
	Advantages and Disadvantages
	Application Porting

